Fundamental Theorems Of Calculus

Published November 5, 2022 by Connor
Math
Fundamental Theorems Of Calculus

These are my chapter 17 notes from calc 3. This was also the exam I bombed, so forgive me for incorrect answers, some of the answers are my incorrect homework. Also, some equations might not show on mobile.

17.1 Green’s Theorem

Used to find the circulation of a non-conservative vector field. The curve CC (the boundary) must be a closed curve that doesn’t intersect.

Recap

Recall the following two notations for line integral of F=F1,F2F = \langle F_1, F_2 \rangle

CFdrandCF1dx+F2dy\int_C F \cdot dr \quad \text{and} \quad \int_C F_1 dx + F_2 dy

If CC is parametrized by r(t)=x(t),y(t)r(t) = \langle x(t), y(t) \rangle for atba \le t \le b, then

dx=x(t)dtdy=y(t)dtdx = x'(t)dt \quad \quad dy = y'(t)dt CF1dx+F2dy=ab(F1(x(t),y(t))x(t)+F2(x(t),y(t))y(t))\int_C F_1dx + F_2 dy = \int^b_a \Big ( F_1 (x(t), y(t)) x'(t) + F_2(x(t), y(t)) y'(t)\Big )

Green’s Theorem

Let DD be a domain whose boundary D\partial D is a simple closed curve, oriented counterclockwise if F1F_1 and F2F2 have continuous partial derivatives in an open region containing DD, then

DFdr=DF1dx+F2dy=D(F2xF1y)dA\oint{\partial D} F \cdot dr = \oint_{\partial D} F_1dx + F_2 dy = \iint_D \Big (\frac{\partial F_2} {\partial x} - \frac{\partial F_1}{\partial y} \Big ) dA

If field FF is a conservative vector field, then the cross-partial condition is satisfied

F2xF1y=0\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0

Example :: Verify Green’s Theorem

Verify Green’s Theorem for the line integral along the unitt circle CC oriented counter-clockwise over formula Cxy2dx+xdy\oint_C xy^2 dx + xdy

  1. We must compare the Integration from Green’s Theorem to the integration from the direct integral
  2. Direct Integration
    1. Find values for unit circle
      1. x=cosθ,y=sinθx = \cos \theta, \quad y = \sin \theta
      2. dx=sinθdθ,dy=cosθdθdx = - \sin \theta d\theta, \quad dy = \cos \theta d \theta
    2. Plug in for dx and dy and solve
      1. Cxy2dx+xdy=02π(cosθsin3θ+cos2θ)dθ\oint_C xy^2 dx + xdy = \int^{2\pi}_0 (-\cos\theta\sin^3\theta + \cos^2 \theta) d \theta
    3. Intgerate
      1. 02π(cosθsin3θ+cos2θ)dθ=sin4θ402π+12(θ+sin2θ2)02π=π\int^{2\pi}_0 (-\cos\theta\sin^3\theta + \cos^2 \theta) d \theta = -\frac{\sin^4 \theta}{4} \Big |_0^{2\pi} + \frac{1}{2} ( \theta + \frac{\sin 2\theta}{2}) \Big |^{2\pi}_0 = \pi
  3. Green’s Theorem Integral
    1. F1=xy2F_1 = xy^2 and F2=xF_2 = x
    2. We can check if the item is conservative and solve for Green’s Theorem
      1. F2xF1y=xxyxy2=12xy\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} x - \frac{\partial }{\partial y} xy^2 = 1 - 2xy
    3. Now we integrate
      1. Since dA=dxdydA = dxdy we can translate our shape to tackle this problem. Since the unit circle is x2+y21x^2 + y^2 \le 1. We can solve for y=±1x2y = \pm \sqrt{1 - x^2}
      2. D(12xy)dA=21x=11x2y=1x2=1x=1xy2y=1x21x2dx=0\iint_D (1 - 2xy) dA = -2 \int^1{x=-1} \int^{\sqrt{1 - x^2}}{y=-\sqrt{1 - x^2}} = - \int^1{x=-1}xy^2 \Big |^{\sqrt{1 - x^2}}_{y = - \sqrt{1 - x^2}}dx = 0
      3. D1dA=area(D)=π\iint_D 1 dA = area(D) = \pi
Example :: Evaluate the Green’s Theorem:

Evaluate I=FdrI = \oint F \cdot dr, where F(x,y)=y+sin(x2),x2+ey2F(x,y) = \langle y + \sin(x^2), x^2 + e^{y^2} \rangle and CC is a circle of radius 4 centered at the origin oriented counterclockwise, using the easiest method

  1. F1=y+sinx2F_1 = y + \sin x^2 and F2=x2+ey2F_2 = x^2 + e^{y^2}
  2. Set up the paramtrization of the circle
    1. 4cosθ,4sinθ\langle 4\cos \theta, 4 \sin \theta \rangle
  3. Find dxdx and dydy
    1. dx=4sinθdx = -4\sin \theta and dy=4cosθdy = 4\cos \theta
  4. Plug dxdx and dydy into the equation
    1. F(x,y)=(y+sinx2)dx+(x2+ey2)dy=F(x,y) = (y + \sin x^2)dx + (x^2 + e^{y^2})dy =
    2. F(x,y)=(4sinθ+sin(16cos2θ))(4sinθ)dθ+(16cos2θ+e16sin2θ)4cosθdθF(x,y) = (4\sin\theta + \sin(16\cos^2\theta))(-4\sin\theta)d\theta + (16\cos^2\theta + e^{16\sin^2 \theta}) \cdot 4 \cos \theta d\theta
    3. F(x,y)=(16sin2θ4sinθsin(16cos2θ)+64cos3θ+4cosθe16sin2θ)dθF(x,y) = (-16\sin^2\theta - 4 \sin \theta \sin (16\cos^2\theta) + 64 \cos^3 \theta + 4 \cos \theta \cdot e^{16\sin^2 \theta})d\theta
  5. Solve for Green’s Theorem
    1. F2xF1y=x(x2+ey2)y(y+sin(x2))=2x1\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} (x^2 + e^{y^2}) - \frac{\partial }{\partial y}(y + \sin(x^2)) = 2x - 1
  6. Integrate
    1. D(2x)dxdyD(1)dxdy=0area(D)=16π\iint_D (2x)dxdy \iint_D (-1) dx dy = 0 - area(D) = -16\pi
  7. Find bounds for integral
    1. A circle with a radius of 4 is x2+y2=4x^2 + y^2 = 4. this means we can get y=±4x2y = \pm \sqrt{4 - x^2}
  8. Integrate
    1. 224x24x22xcosx22yey2dydx\int^2{-2} \int^{\sqrt{4 - x^2}}{-\sqrt{4 - x^2}} 2x \cos x^2 - 2ye^{y^2} dydx
    2. Calculate inner integral
      1. 4x24x22xcosx22yey2dy=4xcos(x2)x2+4\int^{\sqrt{4 - x^2}}_{-\sqrt{4 - x^2}} 2x \cos x^2 - 2ye^{y^2} dy = 4x\cos \left(x^2\right)\sqrt{-x^2+4}
    3. Calculate outer integral
      1. x=224xcos(x2)x2+4\int^2_{x=-2} 4x\cos \left(x^2\right)\sqrt{-x^2+4}

Let CRC_R be a circle of radius RR centered at the origin. Use Green’s Theorem to find the value of RR that maximizes y3dx+3xdy\oint y^3 dx + 3x dy or y3,3x\langle y^3, 3x \rangle

  1. Calculate the 1st part of Green’s Theorem
    1. F2rF1θ=x(3x)y(y3)=33y2\frac{\partial F_2}{\partial r} - \frac{\partial F_1}{\partial \theta} = \frac{\partial}{\partial x} (3x) - \frac{\partial }{\partial y} (y^3) = 3 - 3y^2
  2. Convert to y and x to circular coordinates
    1. x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta
    2. D33y2=D33r2sin2θ=0R02π33r2sin2θdθdr\iint_D 3 - 3y^2 = \iint_D 3 - 3r^2\sin^2\theta = \int^R_0 \int^{2\pi}_0 3 - 3r^2\sin^2\theta d\theta dr
  3. Integrate
    1. Calculate inner integral
      1. 02π33r2sin2θdθ=6π3πr2\int^{2\pi}_0 3 - 3r^2\sin^2\theta d\theta = 6\pi -3\pi r^2
    2. Calculate outer integral
      1. 0R6π3πr2=6πR3πR3\int^R_0 6\pi - 3\pi r^2 = 6\pi R - 3 \pi R^3
    3. Find max of R
      1. 3Rπ(2R2)R=23 R \pi (2 - R^2) \quad R = \sqrt{2}

Use Green’s Theorem to evaluate the line integral CFdr\oint_C F \cdot dr where F(x,y)=x2,x2F(x,y) = \langle x^2, x^2 \rangle and CC consists of the arcs y=x2y = x^2 and y=5xy = 5x for 0x50 \le x \le 5. Orient the curve counterclockwise

  1. F1=x2F_1 = x^2 and F2=x2F_2 = x^2
  2. Solve the first part of Green’s Algorithm
    1. F2xF1y=x(x2)y(x2)=2x\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} (x^2) - \frac{\partial }{\partial y} (x^2) = 2x
  3. Set up the integral
    1. 505xx22xdydx=6256\int^50 \int^{5x}{x^2} 2x dydx = \frac{625}{6}

Use Green’s Theorem to evaluate the line integral 8ydx+2xdy\oint 8ydx + 2xdy, where CC is a triangle with verticies (1,0),(1,0),(0,1)(-1, 0), (1, 0), (0, 1). Orient the curve counterclockwise.

  1. Apply Green’s Theorem
    1. F2xF1y=x(2x)y(8y)=28=6\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} (2x) - \frac{\partial }{\partial y} (8y) = 2 - 8 = -6
    2. Integrate
      1. 6D1dA-6 \iint_D 1dA
      2. This is essentially 6-6 times the area of the triangle which gives us 61=66 \cdot 1 = -6

Use Green’s Theorem to evaluate the line integral Cxydx+(x2+x)dy\int_C xydx + (x^2 + x)dy where CC is the path shown in the figure. Suppose that a=8a=8.

  1. Set up integral bounds
    1. 8x8-8 \le x \le 8 and 0y80 \le y \le 8
  2. Use Green’s Theorem
    1. F2xF1y=x(x2+x)y(xy)=2x+1x=x+1\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} (x^2 + x) - \frac{\partial }{\partial y} (xy) = 2x + 1 - x = x + 1
  3. Integrate
    1. Cdx+(x2+x)dy=0+DdA=Area(D)=1682=64\int_C dx + (x^2 + x) dy = 0 + \iint_D dA = Area(D) = \frac{16 \cdot 8}{2} = 64
Formulas for the area of the region DD enclosed by CC

area(D)=Cxdy=ydx=12Cxdyydxarea(D) = \oint_C xdy = \int-ydx = \frac{1}{2} \oint_C xdy - ydx

Circulation Form of Green’s Theorem

DFdr=Dcurlz(F)dA\oint_{\partial D} F \cdot dr = \iint_D curl_z (F)dA where curlz(F)=F2xF1ycurl_z (F)= \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}

17.2 Stoke’s Theorem

Stokes’ Theorem is in 3 dimensions, rather than 2 dimensions

Boundary Orientation

The orientation of surface SS creating a normal vector

Stokes’ Theorem

Let SS be a 3D surface, and let FF be a vector field whose components have continuous partial derivatives on an open region containing SS.

SFdr=Scurl(F)dS=S(×F)dS\oint_{\partial S} F \cdot dr = \iint_S curl(F) \cdot dS = \iint_S ( \nabla \times F) \cdot dS

dS=N(u,v)dudvN = normal vectordS = N(u, v) dudv \quad \text{N = normal vector}

The integral on the left is defined relative to the boundary orientation of S\partial S. The parametrization is…

r(t)=x(t),y(t),f(x(t),y(t))r(t) = \langle x(t), y(t), f(x(t), y(t)) \rangle If SS is a closed surface, then Scurl(F)dS=0\iint_S curl(F) \cdot dS = 0

Example :: Verify Stokes’ Theorem

Verify Stokes’ Theorem for F(x,y,yz)=(y,2x,x+z)F(x,y,yz) = (-y, 2x, x + z) and the upper hemisphere with outward-pointing normal vectors and surface S=(x,y,z):x2+y2+z2=1,z0S = {(x,y,z) : x^2 + y^2 + z^2 = 1, z \ge 0}

  1. Compute the line integral around the boundary curve
    1. Boundary of SS is a unit circle oriented counterclockwise with the paramtrization of r(t)=(cost,sint,0)r(t) = (\cos t, \sin t, 0)
    2. Find r(t)r'(t)
      1. r(t)=(sint,cost,0)r'(t) = (-\sin t, \cos t, 0)
    3. Find F(r(t))F(r(t))
      1. F(r(t))=(sint,2cost,cost)F(r(t)) = (-\sin t, 2 \cos t, \cos t)
    4. Find F(r(t))r(t)F(r(t)) \cdot r'(t)
      1. F(r(t))r(t)=(sint,2cost,cost)(sint,cost,0)F(r(t)) \cdot r'(t) = (-\sin t, 2 \cos t, \cos t) \cdot (-\sin t, \cos t, 0)
      2. F(r(t))r(t)=sin2t+2cos2t=1+cos2tF(r(t)) \cdot r'(t) = \sin^2 t + 2 \cos ^2 t = 1 + \cos^2 t
    5. Integrate
      1. 02π(1+cos2t)dt=2π+π=3π\int^{2\pi}_0 (1 + \cos^2 t)dt = 2\pi + \pi = 3\pi
  2. Use Stokes’ Theorem
    1. Compute the curl
      1. curl(F)=[ijkxyzy2xx+z]=(0,1,3)curl(F) = \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & 2x & x + z \end{bmatrix} = (0, -1, 3)
    2. Compute the surface integral of the curl
      1. Paramatrize the hemisphere using spherical coordinates
        1. G(θ,ϕ)=(cosθsinϕ,sinθsinϕ,cosϕ)G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
      2. Find the normal vector
        1. N=Tθ×Tϕ=sinϕ(cosθsinϕ,sinθsinϕ,cosϕ)N = T_\theta \times T_\phi = \sin\phi(\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)
      3. Find curl(F)Ncurl(F) \cdot N
        1. curl(F)N=sinϕ(0,1,3)(cosθsinϕ,sinθsinϕ,cosϕ)curl(F) \cdot N = \sin\phi (0, -1, 3) \cdot (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
        2. curl(F)N=sinθsin2ϕ+3cosϕsinϕcurl(F) \cdot N = -\sin\theta\sin^2\phi + 3\cos \phi \sin \phi
      4. Integrate
        1. Scurl(F)dS=π/2ϕ=0θ=02π(sinθsin2ϕ+3cosϕsinϕ)dθdϕ\iint_S curl(F) \cdot dS = \int^{\pi/2}{\phi=0} \int^{2\pi}_{\theta = 0} (-\sin\theta\sin^2\phi + 3\cos \phi \sin \phi) d\theta d\phi
        2. =0+2ππ/2ϕ=03cosϕsinϕdϕ=2π(32sin2ϕ)π/2ϕ=0=3π=0 + 2\pi \int^{\pi/2}{\phi = 0} 3 \cos \phi \sin \phi d\phi = 2\pi(\frac{3}{2}\sin^2 \phi) \Big |^{\pi/2}{\phi = 0} = 3\pi
  3. Conclusion: Verified Stokes’ Theorem
Example :: Stokes’ Theorem:

Consider the vector field F=(9y,5z,x)F = (9y, 5z, x) and let CC be the triangle with verticies (0,0,0)(0,0,0), (3,0,0)(3,0,0) and (0,3,3)(0,3,3), oriented counterclockwise as viewed from above. Apply Stokes’ Theorem to evaluate Fdr\oint F \cdot dr by finding the flux of curl(F)curl(F) across an appropriate surface.

  1. Use Stokes’ Theorem to find the answer
    1. SFdr=Scurl(F)dS=S(×F)dS\oint_{\partial S} F \cdot dr = \iint_S curl(F) \cdot dS = \iint_S ( \nabla \times F) \cdot dS
  2. Find curl(F)curl(F)
    1. curl(F)=[ijkxyz9y5zx]=(5)i(10)j+(09)k=(5,1,9)curl(F) = \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 9y & 5z & x \end{bmatrix} = (- 5)i - (1-0)j + (0 - 9)k = (-5, -1, -9)
  3. Find Normal vector NN
    1. N=rx×ry=[ijk100011]=(0,1,1)N = r_x \times r_y = \begin{bmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = (0,-1, 1)
  4. Integrate
    1. Scurl(F)dS=3x=0y=03x(5,1,9)(0,1,1)dydx\iint_S curl(F) \cdot dS = \int^3{x=0} \int^{3-x}_{y=0} (-5, -1, -9) \cdot (0, -1, 1) dydx
    2. 3x=03xy=08dydx\int^3{x=0} \int^{3-x}{y=0} -8 dydx
    3. 83x=03xy=0dydx=36-8 \int^3{x=0} \int^{3-x}{y=0} dydx = -36

Suppose F=(y+9x,8x+2z,6y+4x)F = (y + 9x, 8x + 2z, 6y + 4x) and SS is a surface bounded by CC, a circle with radius 4, center at (3,0,0)(3,0,0), in the plane x=3x=3, and oriented counterclockwise as viewed from the origin (0,0,0)(0,0,0). Find the flux of curl(F)curl(F) across SS and then evaluate the circulation CFdr\oint_C F \cdot dr

  1. Find Scurl(F)dS\iint_S curl(F) \cdot dS
    1. Find curl(F)curl(F)
      1. curl(F)=[ijkxyzy+9x8x+2z6y+4x](62)i(00)j+(81)k=(4,0,7)curl(F) = \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + 9x & 8x + 2z & 6y + 4x \end{bmatrix} (6 - 2)i - (0 - 0)j + (8 - 1)k = (4, 0, 7)
      2. Find the parametrization for TrT_r and TθT_\theta
      3. Tr=r=(0,cosθ,sinθ)T_r = \frac{\partial}{\partial r} = (0, \cos\theta, \sin \theta) 2. tθ=θ=(0,rsinθ,rcosθ)t_\theta = \frac{\partial}{\partial \theta} = (0, -r\sin\theta, r\cos\theta)
      4. Find the normal vector NN
        1. N=Tr×Tθ=[ijk0cosθsinθ0rsinθrcosθ]=(r,0,0)N = T_r \times T_\theta = \begin{bmatrix} i & j & k \\ 0 & \cos\theta & \sin\theta \\ 0 & -r\sin\theta & r\cos\theta \end{bmatrix} = (r, 0, 0)
        2. Since the boundary orientation is counterclockwise viewed from the origin, the normal points toward the origin rather than away from it, so N=(r,0,0)N = (-r, 0,0)
        3. Find the curl
          1. Scurl(F)dr=0402π(4,4,7)(r,0,0)=64π\iint_S curl(F) \cdot dr = \int^4_0 \int_0^{2\pi} (4, -4, 7) \cdot (-r, 0, 0) = -64\pi
  2. CFdr=64π\oint_C F \cdot dr = -64\pi

Suppose F=(5y,2x,5y)F = (5y, -2x, 5y) and SS is a surface bounded by CC, the circle x2+y2=25x^2 + y^2 = 25 and z=2z = 2 oriented counterclockwise as viewed from above. Find the flux of curl(F)curl(F) across SS and then evaluate the circulation CFdr\oint_C F \cdot dr

  1. Find the curl
    1. curl(F)=[ijkxyz5y2x5y]=5i0j+(25)k=(5,0,7)curl(F) = \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 5y & -2x & 5y \end{bmatrix} = 5i - 0j + (-2-5)k = (5, 0, -7)
  2. Find paramtrization of T<em>rT<em>r and T</em>θT</em>\theta
    1. Tr=(cosθ,sinθ,0)T_r = (\cos\theta, \sin \theta, 0)
    2. Tθ=(rsinθ,rcosθ,0)T_\theta = (-r\sin\theta, r\cos\theta, 0)
  3. Find the normal vector NN
    1. N=T<em>r×T</em>θ=[ijkcosθsinθ0rsinθrcosθ0]=(0,0,r)N = T<em>r \times T</em>\theta = \begin{bmatrix} i & j & k \\ \cos\theta & \sin \theta & 0 \\ -r\sin\theta & r\cos\theta & 0\end{bmatrix} = (0, 0, r)
    2. We invert this to N=(0,0,r)N = (0,0,-r) because we are positioned counterclockwise
  4. Integrate
    1. r=052π0(5,0,7)(0,0,r)=75r=002πrdθdr=175π\int^5_{r=0} \int^{2\pi}0 (5, 0, -7) \cdot (0,0,r) = -7\int^5{r=0} \int^{2\pi}_0r d\theta dr = -175\pi

17.3 Divergence Theorem

The Divergence Theorem

Let SS be a closed surface that enclosed a region WW in R3R^3. Assume that SS is piecewise smooth and is oriented by normal vectors pointing to the outside of WW. If FF is a vector field whose components have continuous partial derivatives in an open domain containing WW, then SFdS=Wdiv(F)dVdiv(F)=F\iint_S F \cdot dS = \iiint_W div(F) dV \quad\quad div(F) = \nabla F

Example :: Divergence theorem:

Use the Divergence Theorem to evaluate the flux SFdS\iint_S F \cdot dS F(x,y,z)=zx,4yx3,x2zF(x,y,z) = \langle zx, 4yx^3, x^2 z \rangle. Let SS be the surface that bounds the solid region with bondary given by y=4x2z2,y=0y = 4-x^2 - z^2,y=0. SFdS= ?\iint_S F \cdot dS = ~?

  1. Find the divergence
    1. div(F)=F=z+4x3+x2div(F) = \nabla F = z + 4x^3 + x^2
  2. Paramatrize the shape using cylindrical coordinates
    1. x=rcosθ,y=y,z=rsinθx = r\cos \theta, \quad y = y, \quad z = r\sin \theta
    2. div(F)=rsinθ+4r3cos3θ+r2cos2θdiv(F) = r\sin\theta + 4r^3\cos^3\theta + r^2\cos^2\theta
  3. Integrate
    1. Wdiv(F)=0202π04rrsinθ+4r3cos3θ+r2cos2θ dy dθ dr=16π3\iiint_W div(F) = \int^2_0 \int^{2\pi}_0 \int_0^{4-r} r\sin\theta + 4r^3\cos^3\theta + r^2\cos^2\theta ~ dy~ d\theta ~dr = \frac{16\pi}{3}

Use the Divergence Theorem to evaluate the flux of the field F(x,y,z)=ez2,4y+sin(x2z),3z+x2+9y2F(x,y,z) = \langle e^{z^2}, 4y + \sin(x^2 z), 3z + \sqrt{x^2 + 9y^2} \rangle through the surface SS, where SS is the region x2+y2z8x2y2x^2 + y^2 \le z \le 8 - x^2 - y^2

  1. Find the div(F)div(F)
    1. div(F)=F=0+4+3=7div(F) = \nabla F = 0 + 4 + 3 = 7
  2. Find bounds for rr by seeing where the bounds intersect
    1. x2+y2=8x2y2x^2 + y^2 = 8 - x^2 - y^2
    2. 82x22y28 - 2x^2 - 2y^2
    3. r=2r = 2
  3. Integrate
    1. 70202π(82x22y2)rdθ dr=140202π(4r2)rdθ dr7 \int^2_0 \int^{2\pi}_0 (8-2x^2-2y^2)r d\theta~dr = 14 \int^2_0 \int^{2\pi}_0 (4-r^2)r d\theta~dr

Use the Divergence Theorem to evaluate the flux of the field F(x,y,z)=3x2z2,ez2cosx,3y3F(x,y,z) = \langle 3x^2 - z^2, e^{z^2}-\cos x, 3y^3\rangle through the surface SS, where SS is the boundary of the region bounded by x+2y+4z=12x + 2y + 4z = 12 and the coordinate planes in the first octant. SFdS\iint_S F \cdot dS

  1. Find the div(F)div(F)
    1. div(F)=F=6x+0+0=6xdiv(F) = \nabla F = 6x + 0 + 0 = 6x
  2. Find bounds
    1. 0x120 \le x \le 12
    2. 0y6x20 \le y \le 6 - \frac{x}{2}
    3. 0z3y2x40 \le z \le 3 - \frac{y}{2} - \frac{x}{4}
  3. Integrate
    1. 01206x203y2x46x dz dy dx=648\int^{12}_0 \int^{6 - \frac{x}{2}}_0 \int^{3 - \frac{y}{2} - \frac{x}{4}}_0 6x ~dz~dy~dx = 648