Line and surface integrals

Published October 2, 2022 by Connor
Math
Line and surface integrals

This was probably my favorite chapter.

Types of Integrals

  1. Scalar line integral along a curve CC given by r(t)r(t) for atba \le t \le b (can be used to compute arc length, mass, electric potential):
    Cf(x,y,z)ds=abf(r(t))r(t)dt\int_C f(x,y,z) ds = \int^b_a f(r(t)) ||r'(t)|| dt
  2. Vector line integral to calculate work along a curve CC given by r(t)r(t) for atba \le t \le b
    CFdr=abF(r(t))r(t)dt=CF1dx+F2dy+F3dz\int_C F \cdot dr = \int^b_a F(r(t)) \cdot r'(t)dt = \int_C F_1 dx + F_2dy + F_3 dz
  3. Vector line integral to calculate flux across a curve CC given by r(t)r(t) for atba \le t \le b
    CFnds=abF(r(t))N(t)dt\int_C F \cdot n ds = \int^b_a F(r(t)) \cdot N(t) dt
  4. Surface integral over a surface with parametrization G(u,v)G(u,v) and parameter domain DD (can be used to calculate surface area, total charge, gravitational potential)
    Sf(x,y,z)dS=Df(G(u,v))N(u,v)dudv\iint_S f(x,y,z) dS = \iint_D f(G(u,v)) ||N(u,v)|| dudv
  5. Vector surface integral to calculate flux of a vector field FF across a surface SS with parameterization G(u,v)G(u,v) and parameter domain DD:
    S(Fn)dS=SFdS=DF(G(u,v))N(u,v)dudv\iint_S (F \cdot n) dS = \iint_S F \cdot dS = \iint_D F(G(u,v)) \cdot N(u,v)dudv

16.1 Vector Fields

Vector Field

A field to represent physical phenomena such as force fields, electric fields, magnetic fields and other large systems.

A vector field is typically represented in the form:
F(x,y,z)=F1(x,y,z),F2(x,y,z),F3(x,y,z)F(x,y,z) = \langle F_1(x,y,z), F_2(x,y,z), F_3(x,y,z) \rangle
To each point P=(a,b,c)P=(a,b,c) is associated the vector F(a,b,c)F(a,b,c), which we also denote as F(P)F(P) or F=F1i+F2j+F3kF=F_1 {\bf i} +F_2 {\bf j} + F_3 {\bf k}

Example :: Finding vector at a point using a vector field:

Which vector corresponds to the point P=(2,4,2)P = (2,4,2) for the vector field F(x,y,z)=yz,x,zyF(x,y,z) = \langle y-z, x, z- \sqrt{y} \rangle?

  1. Plug point PP into F(x,y,z)F(x,y,z)
    F(P)=F(2,4,2)=(4)(2),(2),(2)(4)=2,2,0F(P) = F(2,4,2) = \langle (4)-(2), (2), (2)- \sqrt{(4)} \rangle = \langle 2, 2, 0 \rangle
Constant Vector Field

A sketch used to represent a complicated vector field as a uniform set of similar vectors

Unit Vector Field

A vector field, but all vectors are [[vectors#Unit Vector Normalizing a Vector|unit vector]] and represented through the equation F(P)||F(P)||

Radial Vector Field

If F(P)F(P) is parallel to OP\vec{OP} and F(P)||F(P)|| depends only on the distance rr from PP to the origin

Dimensionsr
R2R^2r=x2+y2r=\sqrt{x^2+y^2}
R3R^3r=x2+y2+z2r=\sqrt{x^2+y^2 + z^2}

Unit Radial Vector Field:
er=xr,yr,zr=xx2+y2+z2,yx2+y2+z2,zx2+y2+z2e_r = \Big \langle \frac{x}{r}, \frac{y}{r}, \frac{z}{r} \Big \rangle = \Bigg \langle \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}} , \frac{z}{\sqrt{x^2 + y^2 + z^2}} \Bigg \rangle

Solving for 2D Unit Vector Field

Match each of the following planar vector fields with the corresponding plot. Note that the vectors are scaled to avoid overlap

F(x,y)=4yx2+y2,4xx2+y2F(x,y)= \langle \frac{-4y}{\sqrt{x^2 + y^2}}, \frac{4x}{\sqrt{x^2 + y^2}} \rangle

F(x,y)=4xx2+y2,4yx2+y2F(x,y)= \langle \frac{4x}{\sqrt{x^2 + y^2}}, \frac{4y}{\sqrt{x^2 + y^2}} \rangle

F(x,y)=4yx2+y2,4yx2+y2F(x,y)= \langle \frac{-4y}{\sqrt{x^2 + y^2}}, \frac{4y}{\sqrt{x^2 + y^2}} \rangle

F(x,y)=4xx2+y2,4xx2+y2F(x,y)= \langle \frac{4x}{\sqrt{x^2 + y^2}}, \frac{4x}{\sqrt{x^2 + y^2}} \rangle

Operations on Vector Fields

Three of the most important derivative operations in multivariable calculus are the [[multivariable functions#The Gradient|gradient]], divergence, and curl.

Divergence

Operations on a vector field using dot product
div(F)=F=x,y,zF1,F2,F3=F1x+F2y+F3z\text{div}(F) = \nabla \cdot F = \Bigg \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \Bigg \rangle \cdot \langle F_1, F_2, F_3 \rangle = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}
Divergence laws:

RuleExample
Distributivediv(F+G)=div(F)+div(G)\text{div}(F+G) = \text{div}(F) + \text{div}(G)
Scalardiv(cF)=cdiv(F)\text{div}(cF) = c \cdot \text{div}(F)
Curl

Operations on a vector field using cross product
curl(F)=×F=[ijk xyz F1F2F3]=<br>(F3yF2z)i(F3xF1z)j+(F2xF1y)\text{curl}(F) = \nabla \times F = \begin{bmatrix} {\bf i} & {\bf j} & {\bf k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ F_1 & F_2 & F_3 \end{bmatrix} =<br>\Bigg ( \frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z}\Bigg ){\bf i} - \Bigg (\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\Bigg ){\bf j} + \Bigg ( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \Bigg )

Solving for Divergence and Curl

Calculate div(F)\text{div}(F) and curl(F)\text{curl}(F)
F=y,2z,xF = \langle y, 2z, x \rangle

  1. Calculate the div(F)\text{div}(F)
    1. Solve for \nabla
      =0,0,0\nabla = \langle 0, 0, 0 \rangle
    2. Plug into the [[line and surface integrals#Divergence|divergence equation]]
      div(F)=0,0,0y,2z,x=0+0+0=0\text{div}(F) = \langle 0, 0, 0 \rangle \cdot \langle y, 2z, x \rangle = 0 + 0 + 0 = 0
  2. Calculate the curl(F)\text{curl}(F)
    1. plug in nabla solved for above into [[line and surface integrals#Curl|curl equation]]
  3. curl(F)=(y(x)z(2z))i(x(y)z(x))j+(x(2z)y(y))=2,1,1\text{curl}(F) = \Bigg ( \frac{\partial }{\partial y}(x)-\frac{\partial}{\partial z}(2z)\Bigg ){\bf i} - \Bigg (\frac{\partial}{\partial x}(y) - \frac{\partial}{\partial z}(x)\Bigg ){\bf j} + \Bigg ( \frac{\partial}{\partial x}(2z) - \frac{\partial}{\partial y}(y) \Bigg ) = \langle -2, -1, -1\rangle

Let F=5x4zx2,4zxy,8z2x2F=\langle 5x-4zx^2, 4z-xy, 8z^2x^2 \rangle. Calculate div(F)div(F) and curl(F)curl(F)

  1. Solve div(F)div(F)
    1. Plug into the [[line and surface integrals#Divergence|divergence equation]]
      div(F)=F=sum54zx,x,16zx2=54zxx+16zx2\text{div}(F) =\nabla F = \text{sum}\langle 5-4zx, -x, 16zx^2 \rangle = 5-4zx-x+16zx^2
  2. Solve for curl(F)\text{curl}(F)
    1. Plug in nabla solved for above into [[line and surface integrals#Curl|curl equation]]
      curl(F)=×F=[ijk xyz 5x4zx24zxy8z2x2]\text{curl}(F) = \nabla \times F = \begin{bmatrix} {\bf i} & {\bf j} & {\bf k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ 5x-4zx^2 & 4z-xy & 8z^2x^2 \end{bmatrix}
      =y(8z2x2)z(4zxy)(x(8z2x2)z(5x4zx2))+x(4zxy)y(5x4zx2)=\frac{\partial}{\partial y} (8z^2x^2) - \frac{\partial}{\partial z} (4z-xy) - \Bigg (\frac{\partial}{\partial x} (8z^2x^2) - \frac{\partial}{\partial z} (5x-4zx^2) \Bigg ) + \frac{\partial}{\partial x} (4z-xy) - \frac{\partial}{\partial y} (5x-4zx^2)
  3. =(04)i(16z2x(4x2))j+(y0)k=4i(16z2x+4x2)jyk=(0 - 4)i - (16z^2x - (- 4x^2))j + (-y - 0)k = -4{\bf i} - (16z^2 x + 4x^2 ){\bf j} -y{\bf k}

Let F=3x,7x2,2F= \langle 3x, 7x^2, 2 \rangle and G=2,7x,3G=\langle 2, 7x, 3 \rangle

  1. Calculate curl(F)\text{curl}(F)
    1. Evaluate using [[line and surface integrals#Curl|curl equation]]
      curl(F)=×F=[ijk xyz 3x7x22]=0,0,14x\text{curl}(F) = \nabla \times F = \begin{bmatrix} {\bf i} & {\bf j} & {\bf k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ 3x & 7x^2 & 2 \end{bmatrix} = \langle 0, 0, 14x\rangle
  2. Calculate curl(G)\text{curl}(G)
    1. Evaluate using [[line and surface integrals#Curl|curl equation]]
      curl(G)=×G=[ijk xyz 27x3]=0,0,7\text{curl}(G) = \nabla \times G = \begin{bmatrix} {\bf i} & {\bf j} & {\bf k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ 2 & 7x & 3 \end{bmatrix} = \langle 0, 0, 7 \rangle
  3. Calculate curl(F+G)\text{curl}(F + G)
    1. Using the curl rule Curl(F+G)=Curl(F)+Curl(G)Curl(F + G) = Curl(F) + Curl(G)
      curl(F+G)=0,0,14x+0,0,7=0,0,14x+7\text{curl}(F + G) = \langle 0, 0, 14x\rangle + \langle 0, 0, 7\rangle = \langle 0, 0, 14x + 7 \rangle

Conservative Vector Fields

A vector field F is conservative if there is a differentiable function f(x,y,z)f(x,y,z) such that
F=f=fx,fy,fzF = \nabla f = \Big \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\Big \rangle

Example :: Finding the potential vector field function:

Consider the vector field F=8xyz,6x2z,x2yzF = \langle 8xyz, 6x^2z, x^2yz \rangle. Identify the potential function for the vector field F.

  1. To check whhether the vector field F=F1,F2,F3F = \langle F_1, F_2, F_3 \rangle is conservative, examine the cross-partials equation
    F1y=F2xF2z=F3yF3x=F1z\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \quad \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} \quad \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}
  2. Plug in values into cross-partials equation
    8xz12xz6x2x2z2xyz8xy 8xz \ne 12xz \quad \quad 6x^2 \ne x^2z \quad \quad 2xyz \ne 8xy
    If even just one didn’t equal the others we wouldn’t have a valid vectorfield

16.2 Line Integrals

Integrals can be separated into two categories, integrals over functions and integrals over vectorfields.

Scalar Line Integrals

Cf(x,y,z)ds=lim[Δsi]0i=1Nf(Pi)Δsi\int_C f(x,y,z)ds = \lim_{[\Delta s_i]\rightarrow 0} \sum^N_{i=1}f(P_i)\Delta s_i

  • This formula is stating how the line integral can be represented as a riemann sum

The line integral where f(x,y,z)=1f(x,y,z)=1 is equal to the length of the line shown below
C1ds=length(C)=Δsi=ti<em>t</em>i1r(t)dt\int_C 1ds = length(C)=\Delta s_i = \int^{t_i}<em>{t</em>{i-1}}||r'(t)||dt

Theorem 1: Computing a Scalar Line Integral

Let r(t)r(t) be a parametrization that directly traverses CC for atba \le t \le b. If f(x,y,z)f(x,y,z) and r(t)r'(t) are continuous, then
Cf(x,y,z)ds=abf(r(t))r(t)dt\int_C f(x,y,z)ds = \int^b_a f(r(t))||r'(t)||dt
ds=r(t)dtr(t)=x(t)2+y(t)2+z(t)2ds=||r'(t)||dt \quad ||r'(t)||=\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}

Computing Scalar Line Integral

Compute the integral of the scalar function f(x,y,z)=3xy+5zf(x,y,z)=3xy + 5z over r(t)=cos(t),sin(t),tr(t)=\langle \cos(t), \sin(t), t \rangle for 0tπ0 \le t \le \pi

  1. Compute dsds
    r(t)=sin(t),cos(t),1r'(t)=\langle -\sin(t), \cos(t), 1 \rangle
    ds=r(t)dt=(sint)2+cos2t+1(dt)=2dtds = ||r'(t)||dt=\sqrt{(-\sin t)^2 + \cos^2t + 1}(dt)=\sqrt{2}dt
  2. Write out the integrand and evaluate
    f(r(t))=f(cost,sint,t)=3costsint+5tf(r(t)) = f(\cos t, \sin t, t) = 3\cos t \sin t + 5t
    f(x,y,z)ds=f(r(t))r(t)dt=[3(cost)(sint)+(1)5]2dtf(x,y,z)ds = f(r(t)) ||r'(t)||dt = [3(\cos t)(\sin t) + (1)5 ]\sqrt{2}dt
  3. 20π(3costsint+5t)dt=2(3cos2(t)2+5t22)0π=5π22\sqrt{2}\int^{\pi}_0 (3\cos t\sin t + 5t)dt = \sqrt{2} (-\frac{3\cos^2(t)}{2} + \frac{5t^2}{2})\Big |^\pi_0 = \frac{5\pi ^2}{\sqrt{2}}

Calculate the total mass of a metal tube in a helical shape r(t)=cost,sint,t2r(t)=\langle \cos t, \sin t, t^2 \rangle over 0t2π0 \le t \le 2\pi if the mass density is δ(x,y,z)=8z g/cm\delta (x,y,z) = 8 \sqrt{z} \space g/cm

  1. Calculate dsds
    ds=r(t)dt=(sint)2+(cost)2+(2t)2 dt=4t2+1 dtds=||r'(t)||dt =\sqrt{-(\sin t)^2 + (\cos t)^2 + (2t)^2} \space dt = \sqrt{4t^2 + 1}\space dt
  2. Write out the integrand and evaluate
    δ(x,y,z)=δ(r(t))4t2+1 dt=8(t2)4t2+1 dt\delta(x,y,z) = \delta(r(t))\sqrt{4t^2 + 1}\space dt = 8(\sqrt{t^2})\sqrt{4t^2 + 1}\space dt
    02π8t4t2+1 dt=1334.854\int^{2\pi}_0 8t \sqrt{4t^2 + 1} \space dt = \:1334.854
Example :: Arc Length:

The rear wheel of a bicycle is following the path t,t2\langle t, t^2 \rangle for 0t20 \le t \le 2. The front wheel is always exactly 1 meter in front of the rear wheel.

  1. Give a parametrization for the position of the front wheel of the tire.
    1. Find the direction of real wheel path
      1. ddtt,t2=1,2t\frac{d}{dt}\langle t, t^2 \rangle = \langle 1, 2t \rangle
    2. Find the unit vector of the directional vector
      1. 1,2t=11+4t2,2t1+4t2||\langle 1, 2t \rangle|| = \langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}} \rangle
  2. [C] Which wheel travels a longer distance? Set up arclength integrals for both paramtrization, and then use a computer to calculate the integrals and determine what distance each wheel travels.
    1. Arclength integral
      1. Front Wheel =0212+(2t)2dt=4.6467\text{Front Wheel =}\int^2_0 \sqrt{1^2 + (2t)^2}dt = 4.6467
      2. Back Wheel =02(ddt(11+4t2))2+(ddt(2t1+4t2))2=5.13\text{Back Wheel =}\int^2_0 \sqrt{ \Big (\frac{d}{dt}( \frac{1}{\sqrt{1 + 4t^2}}) \Big )^2 + \Big (\frac{d}{dt}( \frac{2t}{\sqrt{1 + 4t^2}}) \Big )^2} = 5.13
  3. Consider the function f(x,y)=x2eyxy2f(x,y) = x^2 e^y - xy^2, and calculate C1fdr\int_{C_1} \nabla f \cdot dr, where C1C_1 is the path taken by the rear wheel.
    1. Find f(r(t))=t2et2t5f(r(t)) = t^2e^{t^2} - t^5
    2. f(r(2))f(r(0))=22e2225e0=4e4321=4e433f(r(2)) - f(r(0)) = 2^2e^{2^2} - 2^5 - e^0 = 4e^4 - 32 - 1 = 4e^4 - 33

Vector Line Integrals

The difference between vector and scalar line integrals is that vector line integrals depend on the direction along the curve. This can be analgous to travelling up and down a mountain being very important to distinguish when regarding work.

Vector Line Integral Formula

The line integral of a vector field FF along an oriented curve CC is the integral of the tangential component of FF.

C(FT) ds=CFdrdr=Tds\int_C (F \cdot T) \space ds = \int_C F \cdot dr\quad \quad dr = T \cdot ds

Orientation

The specified direction along curve CC is known as the orientation. Positive is movement in the chosen direction while negative is opposing said direction.

Theorem 2: Computing a Vector Line Integral

If r(t)r(t) is a positively oriented regular paramtrization of an oriented curve CC for atba \le t \le b, then
CFdr=CFTds=abF(r(t))r(t)dt\int_C F \cdot dr = \int_C F \cdot Tds = \int_a^b F(r(t)) \cdot r'(t) dt
dr=r(t)dt=x(t),y(t),z(t) dtdr = r'(t)dt = \langle x'(t), y'(t), z'(t) \rangle \space dt

Example :: Computing Vector Line Integral:

Calculate the work done by the field F(x,y,z)=ex,ey,xyzF(x,y,z) = \langle e^x, e^y, xyz \rangle when the object moves along the path r=t2,t,t3r=\langle t^2, t, \frac{t}{3} \rangle for 0t10 \le t \le 1

  1. Using [[line and surface integrals#Theorem 2 Computing a Vector Line Integral|Theorem 2]], we will follow and use the formula
    W=CF(r(t))r(t)dtW=\int_C F(r(t)) \cdot r'(t)dt
  2. Find the value of F(r(t))F(r(t))
    F(r(t))=et2,et,(t2)(t)(t3)=et2,et,t43F(r(t)) = \langle e^{t^2}, e^{t}, (t^2) (t)(\frac{t}{3}) \rangle = \langle e^{t^2}, e^{t},\frac{t^4}{3} \rangle
  3. Find the value of r(t)r'(t)
    r(t)=2t,1,13r'(t) = \langle 2t, 1, \frac{1}{3} \rangle
  4. Plug into the equation
    Fdr=F(r(t))r(t)dt=et2,et,t432t,1,13dt=(2tet2+et+t49)dtF \cdot dr = F(r(t)) \cdot r'(t) dt = \langle e^{t^2}, e^{t},\frac{t^4}{3} \rangle \cdot \langle 2t, 1, \frac{1}{3} \rangle dt= (2te^{t^2} + e^{t} +\frac{t^4}{9})dt
  5. Set up integral
  6. 01(2tet2+et+t49)dt=2e8945\int^1_0 (2te^{t^2} + e^{t} +\frac{t^4}{9})dt = 2e-\frac{89}{45}

Evaluate the line integral:
C17ydx+16zdy+xdz,r(t)=(2+t1,t3,t2) for 0t1\int_C 17ydx + 16zdy + xdz, \quad r(t) = (2 + t^{-1}, t^3, t^2) \text{ for } 0 \le t \le 1

  1. Using [[line and surface integrals#Theorem 2 Computing a Vector Line Integral|Theorem 2]], we will follow and use the formula
    abF(r(t))r(t)dt\int_a^b F(r(t)) \cdot r'(t) dt
  2. Find r(t)r'(t)
    r(t)=(1t2,3t2,2t)r'(t) = ( -\frac{1}{t^2}, 3t^2, 2t)
  3. Plug in r(t)r(t) to find F(r(t))F(r(t))
    F=17ydx+16zdy+xdz=17y,16z,xF = 17ydx + 16zdy + xdz = \langle 17y, 16z, x \rangle
    F(r(t))=17(t3),16(t2),(2+t1)F(r(t)) = \langle 17(t^3), 16(t^2), (2 + t^{-1}) \rangle
  4. Plug both F(r(t))F(r(t)) and r(t)r'(t) into [[line and surface integrals#Theorem 2 Computing a Vector Line Integral|Theorem 2]]
    abF(r(t))r(t)dt=0117t3,16t2,2+t11t2,3t2,2tdt\int_a^b F(r(t)) \cdot r'(t) dt = \int_0^1 \langle 17t^3, 16t^2, 2 + t^{-1} \rangle \cdot \langle -\frac{1}{t^2}, 3t^2, 2t \rangle dt
    =0117t+48t4+4t+2=5110=\int_0^1 -17t + 48t^4 + 4t + 2 =\frac{51}{10}
Theorem 3: Properties of Vector Line Integrals

Let CC be a smooth oriented curve, and let FF and GG be vector fields
i. Linearity: C(F+G) dr=CF dr+CG dr\text{i. Linearity: }\int_C (F+G) \space dr = \int_C F \space dr + \int_C G \space dr
CkF dr=kCF dr(k a constant)\int_C kF \space dr = k \int_C F \space dr \quad \text{(k a constant)}
ii. Reversing Orientation: CF dr=CF dr\text{ii. Reversing Orientation: } \int_{-C} F \space dr = -\int_C F \space dr
iii.\text{iii.} Additivity: If CC is a union of nn smooth curves C1,,CNC_1, …, C_N, then
CF dr=C1F dr++CNF dr\int_C F \space dr = \int_{C_1} F \space dr + … + \int_{C_N} F \space dr

Example :: Additivity Integration:

Calculate the line integral of F(x,y,z)=(ez,exy,ey)F(x,y,z) = (e^z, e^{x-y}, e^y ) over the closed path ABCA, where A=(2,0,0),B=(0,4,0),C=(0,0,6)A=(2,0,0), B=(0,4,0), C=(0,0,6). Solve for CFdr\int_C F \cdot dr

  1. To solve this problem we will use [[line and surface integrals#Theorem 3 Properties of Vector Line Integrals|additivity theorem]] to find the area under a smooth curve
    CF dr=ABF dr+BCF dr+CAF dr\int_C F \space dr = \int_{{\overline{AB}}} F \space dr + \int_{{\overline{BC}}} F \space dr + \int_{{\overline{CA}}} F \space dr
  2. First compute r(t)r(t) for AB\overline{AB} .
    r(t)=BA=(0,4t,0)(2+2t,0,0)=22t,4t,0r(t) = B-A = (0, 4t, 0) - (-2 + 2t, 0,0) = \langle 2-2t, 4t, 0 \rangle
  3. Set up integral of AB\overline{AB} .
    ABF(r(t))r(t)=(e0,e22t4t,e4t)(2,4,0)=012+4e26t\int_{{\overline{AB}}} F(r(t)) \cdot r'(t) = (e^0, e^{2-2t-4t}, e^{4t} ) \cdot (-2, 4, 0) = \int_0^1 -2 + 4e^{2-6t}
  4. Compute r(t)r(t) for BC\overline{BC} .
    r(t)=CB=(0,0,6t)(0,4+t,0)=(0,44t,6t)r(t) = C - B = (0,0,6t) - (0, -4 + t, 0) = (0, 4 - 4t, 6t)
  5. Set up integral of BC\overline{BC}
    BCF dr=(e6t,e04+4t,e44t)(0,4,6)=014e4t4+6e44tdt\int_{{\overline{BC}}} F \space dr = (e^{6t}, e^{0-4+4t}, e^{4-4t} ) \cdot (0, - 4, 6) = \int^1_0 -4e^{4t-4} + 6e^{4-4t} dt
  6. Find r(t)r(t) of CA\overline{CA}
    r(t)=AC=(2t,0,0)(0,0,6+6t)=(2t,0,66t)r(t) = A - C = (2t, 0, 0) - (0 ,0 ,-6 + 6t) = (2t, 0, 6-6t)
  7. Set up integral for CA\overline{CA}
    CAF dr=(e66t,e2t0,e0)(2,0,6)=012e66t6dt\int_{{\overline{CA}}} F \space dr = (e^{6-6t}, e^{2t-0}, e^0 ) \cdot (2, 0, -6) = \int^1_0 2e^{6-6t} -6 dt
  8. Sum all the integrals together
    CF dr=012+4e22tdt+014e4t4+6e44tdt+012e66t6dt\int_C F \space dr = \int_0^1 -2 + 4e^{2-2t}dt + \int^1_0 -4e^{4t-4} + 6e^{4-4t}dt + \int^1_0 2e^{6-6t} -6 dt
    01(4e22t4e4t4+6e44tdt+2e66t8)dt\int_0^1 ( 4e^{2-2t} -4e^{4t-4} + 6e^{4-4t}dt + 2e^{6-6t} -8 )dt
    =656+13e4+23e2+32e4+13e6 = -\frac{65}{6} + \frac{1}{3}e^{-4} + \frac{2}{3}e^2 + \frac{3}{2}e^4 + \frac{1}{3}e^6
Work Equation

Work refers to the energy expended when a force is applide to an object as it moves along a path.
W=tangential component of F×distance=(Fcosθ)×PQW = \text{tangential component of F} \times \text{distance}=(||F||\cos\theta) \times ||\overrightarrow{PQ}||

Example :: Integration for total charge:

Find the total charge on the curve y=x4/3y=x^{4/3} for 8x278 \le x \le 27 assuming a charge density of δ(x,y)=xy\delta (x,y) = \frac{x}{y}

  1. We can equate
    y=x4/3,r(t)=t,t4/3,08t27y = x^{4/3}, \quad r(t) = \langle t, t^{4/3}, 0 \rangle \quad 8 \le t \le 27
    r(t)=1,43t1/3,0r'(t) = \langle 1, \frac{4}{3}t^{1/3}, 0 \rangle
  2. Solve for ds
    ds=r(t)dt=12+(4x(1/3)3)2+02=12+169t2/3dtds = ||r'(t)||dt = \sqrt{1^2 + \left( \frac{4x^{(1/3)}}{3}\right)^2 + 0^2 } = \sqrt{1^2 + \frac{16}{9}t^{2/3}}dt
    u=12+169t2/3,du=3227t1/3dtu = \sqrt{1^2 + \frac{16}{9}t^{2/3}}, du = \frac{32}{27}t^{-1/3}dt
    u(8)=739u(27)=17u(8) = \frac{73}{9} \quad u(27) = 17
  3. Set up integral
    27<em>8t1/31+169t2/3dt=273217</em>73/9udu=26.43\int^{27}<em>8 t^{-1/3} \sqrt{1 + \frac{16}{9}t^{2/3}}dt = \frac{27}{32 \int^{17}</em>{73/9}} \sqrt{u}du = 26.43
Example :: Integration for work done by a field:

Calculate the work done by the field F when the object moves along the given path from the initial ponit to the final point.
F(x,y,z)=x,y,z,r(t)=cost,sint,tπ2t7π2F(x,y,z) = \langle x,y,z \rangle, \quad r(t) = \langle \cos t, \sin t, t \rangle \quad \frac{\pi}{2} \le t \le \frac{7\pi}{2}

  1. Using the [[line and surface integrals#Theorem 2 Computing a Vector Line Integral|theorem 2 formula]], we can find the answer
  2. We find r(t)r'(t)
    r(t)=sint,cost,1r'(t) = \langle -\sin t, \cos t, 1 \rangle
  3. Find F(r(t))F(r(t))
    F(r(t))=cost,sint,tF(r(t)) = \langle \cos t, \sin t, t \rangle
  4. Plug it into the formula
    C=cost,sint,tsint,cost,1=π/27π/2(costsint+sintcost+t)dt=6π2\int_C = \langle \cos t, \sin t, t \rangle \cdot \langle -\sin t, \cos t, 1 \rangle = \int^{7\pi/2}_{\pi/2} (-\cos t \sin t + \sin t \cos t + t)dt = 6\pi ^2

16.3 Conservative Vector Fields

A conservative vector field is one that satisfies the equation
F1y=F2xF2z=F3yF3x=F1z\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \quad \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} \quad \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}

  • The circulation around a closed path is denoted as CFdr\oint_C F \cdot dr
Path Independence

Theorem indicating that the line integral of FF along a path from PP to QQ depends only on the endpoints PP and QQ

Theorem: Fundamental Theorem for Conservative Vector Fields

Assume that F=fF = \nabla f on a domain DD

  1. If rr is a path along a curve CC from PP to QQ in DD, then
    CFdr=f(Q)f(P)\int_C F \cdot dr = f(Q) - f(P)
    where FF is path independent
  2. In circulation around a closed curve CC, where P=QP=Q, we get 0
    CFdr=0\oint_C F \cdot dr = 0
Example :: Fundamental Theorem for Conservative Vector Field

Let F(x,y,z)=2xy+z,x2,xF(x,y,z) = \langle 2xy + z, x^2, x \rangle

  1. Verify that f(x,y,z)=x2y+xzf(x,y,z) = x^2 y + xz is a potential function for FF
    1. Find the partial derivative of f(x,y,z)f(x,y,z)
      1. Potential function=f=2xy+z,x2,x \text{Potential function} = \nabla f = \langle 2xy + z, x^2, x \rangle
  2. Evaluate CFdr\int_C F \cdot dr, where CC is a curve from P=(1,1,2)P = (1, -1, 2) to Q=(2,2,3)Q = (2, 2, 3)
    1. Use the [[line and surface integrals#Fundamental Theorem for Conservative Vector Fields|fundamental theorem for conservative vector fields]] to find CFdr\int_C F \cdot dr
    2. CFdr=f(Q)f(P)=f(2,2,3)f(1,2,2)\int_C F \cdot dr = f(Q) - f(P) = f(2,2,3) - f(1, -2, 2)

Let f(x,y)=7xcos(y)f(x,y) = 7x \cos(y). Find the conservative vector field FF, which is the gradient of f.

  1. Find the gradient of f(x,y)f(x,y)
    1. f=F=7cos(y),7xsin(y)\nabla f = F = \langle 7 \cos (y) , - 7x \sin (y)\rangle
      Evaluate the line integral of FF over the upper half of the unit circle centered at the origin, oriented clockwise
  2. Since the orgin is oriented clockwise we get P=(1,0)P=(-1, 0) and Q=(1,0)Q = (1, 0)

CFdr=f(Q)f(P)=7(1)cos(0)7(1)cos(0)=7+7=14\int_C F \cdot dr = f(Q) - f(P) = 7(1)\cos(0) - 7(-1)\cos (0) = 7 + 7 = 14

Let f(x,y,z)=3y+3zln(x)f(x,y,z) = 3y + 3z\ln(x). Find the conservative vector field FF, which is the gradient of ff.

  1. F=f=3zx,3,3ln(x)F = \nabla f = \langle \frac{3z}{x}, 3, 3\ln(x) \rangle
    Evaluate the line integral of FF over the circle (x2)2+y2=1(x - 2)^2 + y^2 = 1 in the counter clockwise direction. Find CFdr=?\int_C F \cdot dr = ?
  2. Since the line is a circle, we know that the integral is equal to zero

A vector field FF and contour lines of a potential function for FF are shown in the figure

Calculate the common value of CFdr\int_C F \cdot dr for the curves in the direction from PP to QQ, where CFdr=?\int_C F \cdot dr = ?

  1. Find f(Q)f(Q) and f(P)f(P)
    1. f(Q)=22+3.5=25.5f(Q) = 22 + 3.5 = 25.5
    2. f(P)=1+3.5=4.5f(P) = 1 + 3.5 = 4.5
    3. CFdr=f(Q)f(P)=25.54.5=21\int_C F \cdot dr = f(Q) - f(P) = 25.5 - 4.5 = 21

Calculate the following line integrals using the fundamental theorem of line integrals; be sure to check that the vector fields are conservative

  1. CFdr\int_C F \cdot dr, where F(x,y)=4xyex2,2ex23y2F(x,y) = \langle 4xye^{x^2}, 2e^{x^2} -3y^2 \rangle where CC is the path along (5t4t2+t3,3+3t2t2)(5t - 4t^2 + t^3, 3 + 3t - 2t^2) for 0t20 \le t \le 2
    1. Calculate the [[line and surface integrals#Curl|curl]] of FF
      1. Curl(F)=[xy 4xyex22ex23y2]=x4ex2x4ex2=0Curl(F) = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \ 4xye^{x^2} & 2e^{x^2} - 3y^2\end{bmatrix} = x4e^{x^2} - x4e^{x^2} = 0
      2. t=0:5(0)4(0)2+(0)3,3+3(0)2(0)2)=(0,3)t=0: 5(0) - 4(0)^2 + (0)^3, 3 + 3(0) - 2(0)^2) = (0,3)
      3. t=3:5(2)4(2)2+(2)3,3+3(2)2(2)2)=(2,1)t=3: 5(2) - 4(2)^2 + (2)^3, 3 + 3(2) - 2(2)^2) = (2, 1)
    2. Find F\nabla F
      1. F=(8xyex2,6y)\nabla F = (8xye^{x^2}, -6y)
    3. Plug into equation
      1. F(0,3)=2(0)e(0)2()3o=25F(0, 3) = 2(0)e^{(0)^2} - ()^3o = -25
      2. F(2,1)=2(1)e(2)2(1)3=2e45F(2,1) = 2(1)e^{(2)^2} - (1)^3 = 2e^4 - 5
      3. F(2,1)F(3,0)=2e45(25)=2e4+20F(2, 1) - F(3, 0) = 2e^4 - 5 - (-25) = 2e^4 + 20
      4. ANS: 2e4+202e^4 + 20
  2. C(2xy3z,x2+8y3z,2y43x)\int_C (2xy-3z, x^2 + 8y^3 z, 2y^4 - 3x) where CC is the path (cos(πt),3t25t,tsin2(πt/4)(\cos (\pi t), 3t^2 - 5t, t \sin^2 (\pi t/4) from (1,0,0)(1, 0,0) to (1,2,2)(1,2,2)
  3. CAdr\oint_C A \cdot dr, where A(x,y,z)=y2z2+1,2xyz2+1,2xy2z(z2+1)2A(x,y,z) = \langle \frac{y^2}{z^2 + 1}, \frac{2xy}{z^2 + 1}, \frac{-2xy^2z}{(z^2 + 1)^2} \rangle and CC is the path along the ellipse 4x2+3xy+y2=104x^2 + 3xy + y^2 = 10 oriented counter-clockwise
    1. Since z2+1z^2 + 1 in each component enables the shape of AA to be a circle, we get the answer of 00
    2. ANS: 0
Theorem 2

A vector field FF on an open connected domain DD is path independent if and only if it is conservative

Potential Function

Consider the vector field F=y,x,z3F = \langle y, x, z^3 \rangle. Choose a potential function for F=y,x,z3F = \langle y, x, z^3 \rangle if it exists.

  1. Identify whether F is conservative. So, determine whether the field F=y,x,z3F = \langle y, x, z^3 \rangle satisfies the cross-partials condition.
    1. F1y=y(y)=1\frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y}(y) = 1
    2. F1z=z(y)=0\frac{\partial F_1}{\partial z} = \frac{\partial}{\partial z}(y) = 0
    3. F1x=x(x)=1\frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x}(x) = 1
    4. F1z=z(x)=0\frac{\partial F_1}{\partial z} = \frac{\partial}{\partial z}(x) = 0
    5. F1x=x(z3)=0\frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x}(z^3) = 0
    6. F1y=y(z3)=0\frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y}(z^3) = 0
  2. Now compare values to check
    1. F1y=F2x=1\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} = 1
    2. F2z=F3y=0\frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} = 0
    3. F3x=F1z=0\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} = 0
  3. Thus, FF satisfies the cross-partial condition everywhere. Hence, FF is conservative. Iff(x,y,z)f(x,y,z) is a potential function, then it satisfies the following equation
    1. f(x,y,z)=ydx=xy+f(y,z)f(x,y,z) = \int ydx = xy + f(y,z)
    2. f(x,y,z)=xdy=xy+g(x,z)f(x,y,z) = \int xdy = xy + g(x,z)
    3. f(x,y,z)=z3dz=14z4+h(x,y)f(x,y,z) = \int z^3 dz = \frac{1}{4}z^4 + h(x,y)
  4. These three ways of writing f(x,y,z)f(x,y,z) must be equal so
    1. xy+f(x,y)=xy+g(x,z)=z44+h(x,y)xy + f(x,y) = xy + g(x,z) = \frac{z^4}{4} + h(x,y) for any constant CC
  5. Therefore, there are two potential functions for FF:
    1. f(x,y,z)=xy+z44+2πf(x,y,z) = xy + \frac{z^4}{4} + 2\pi
    2. f(x,y,z)=xy+z4467f(x,y,z) = xy + \frac{z^4}{4} - 67

Evaluate C2xyzdx+x2zdy+x2ydz\int_C 2xyzdx + x^2 z dy + x^2 y dz over the path r(t)=(t26,sin(πt2),et26t)r(t) = \Big( \frac{t^2}{6}, \sin(\frac{\pi t}{2}), e^{t^2 - 6t} \Big ) over the path 0t60 \le t \le 6

  1. Find the points PP and QQ
    1. P=r(0)=((0)26,sin(π(0)2),e(0)26(0))=r(t)=(0,0,1)P = r(0) = \Big( \frac{(0)^2}{6}, \sin(\frac{\pi (0)}{2}), e^{(0)^2 - 6(0)} \Big ) = r(t) = \Big( 0, 0, 1\Big )
    2. Q=r(6)=((6)26,sin(π(6)2),e(6)26(6))=r(t)=(6,0,1)Q = r(6) = \Big( \frac{(6)^2}{6}, \sin(\frac{\pi (6)}{2}), e^{(6)^2 - 6(6)} \Big ) = r(t) = \Big( 6, 0, 1 \Big )
  2. Find the gradient of
    1. f=2xyz,x2z,x2yf = \langle 2xyz, x^2z, x^2y \rangle
    2. f=F=2yz,0,0\nabla f = F = \langle 2yz, 0, 0 \rangle
  3. Integrate
    1. CFdr=f(Q)f(P)\int_C F \cdot dr = f(Q) - f(P)
    2. f(P)=2(0)(0)(1)dx+(0)2(1)dy+(0)2(0)dz=0f(P) = 2(0)(0)(1)dx + (0)^2 (1) dy + (0)^2 (0) dz = 0
    3. f(Q)=2(6)(0)(1)dx+(6)2(1)dy+(6)2(0)dz=36f(Q) = 2(6)(0)(1)dx + (6)^2 (1) dy + (6)^2 (0) dz = 36

Conservative Fields in Physics

The conservation of energy priciple says that KE+PEKE + PE, or kenetic energy plus potential energy, remains constant in an isolated system

In a conservative force field, the work WW against FF required to move the particle from PP to QQ is equal to the change in potential energy
W=CFdr=V(Q)V(P)W = - \int_C F \cdot dr = V(Q) - V(P)

Theorem: Conservation of Energy

The total energy EE of a particle moving under the influence of conservative force field F=VF = -\nabla V is constant in time. That is, dEdt=0\frac{dE}{dt} = 0

Compute the work W against the earth’s gravitational field required to move a satellite of mass  kg along any path from an orbit of altitude 2000 km to an orbit of altitude 4000 km.

  1. The earth’s gravitational field is the inverse-square field
    1. F=kerr2=f,f=krF = -k \frac{e_r}{r^2} = -\nabla f, \quad f = -\frac{k}{r}
      1. r=6.4×106=r = 6.4 \times 10^6 = radius of earth
      2. k=4×1014k = 4 \times 10^{14}
  2. Calculate the integral
    1. W=rmFdr=600rfdr=600kr8.4×10610.4×1065.5×109 joulesW = - \int_r mF \cdot dr = 600 \int_r \nabla f \cdot dr = -\frac{600k}{r}\Big|^{10.4 \times 10^6}_{8.4 \times 10^6} \approx 5.5 \times 10^9 \text{ joules}
Theorem: Existence of a Potential Function Theorem

Let FF be a vector field on a smiply connected domain DD. If FF satisfies the cross-partials condition, then FF is conservative.

16.4 Parametrized Surfaces and Surface Integrals

parametrization of a Sphere

G(θ,ϕ)=(Rcosθsinϕ,Rsinθsinϕ,Rcosϕ),0θ2π,0ϕπG(\theta, \phi ) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi ), \quad 0 \le \theta \le 2\pi , \quad 0 \le \phi \le \pi
Location of north pole: G(θ,0)=(0,0,R)G(\theta, 0) = (0, 0, R)
Location of south pole: F(θ,π)=(0,0,R)F(\theta, \pi) = (0,0,-R)

Parametrization of a Graph:

G(x,y)=(x,y,f(x,y))G(x,y) = (x,y,f(x,y))

parametrization Examples:

u,v3,v\langle u, v^3, v \rangle

u,u(2+cos(v)),u(2+sin(v))\langle u, u(2 + \cos (v)), u(2 + \sin(v)) \rangle

u,u+v,v\langle u, u + v, v \rangle

cos(u)sin(v),3cos(u)sin(v),cos(v)\langle \cos(u)\sin(v), 3\cos(u)\sin(v), \cos(v) \rangle

u,cos(v),sin(v)\langle u, \cos(v), \sin(v) \rangle

Surface Area

To simplify the process, we assume the shapes are squares

Theorem 1: Surface Integrals and Surface Area

Let G(u,v)G(u,v) be a parametrization of a surface SS with parameter domain DD. Assume that GG is continuously differentiable, one-to-one and regular (except possibly at the boundary of DD). Then
Sf(x,y,z)dS=Df(G(u,v))N(u,v)dudv\iint_S f(x,y,z)dS = \iint_D f(G(u,v)) ||N(u,v)||dudv
For f(x,y,z)=1f(x,y,z) = 1, we obtain the surface area of SS:
area(S)=DN(u,v)dudvdS=N(u,v)dudvarea(S) = \iint_D ||N(u,v)|| dudv \quad \Big | \quad dS = ||N(u,v)||dudv

Example :: Evaluating the Surface Area:

Let S=Φ(D)S = \Phi(D) where D=(u,):u2+v21,u0,v0D = {(u,): u^2 + v^2 \le 1, u \ge 0, v \ge 0 } and Φ(u,v)=(2u+1,uv,3u+v)\Phi (u,v) = (2u + 1, u-v, 3u+v)
(a) calculate the surface area of S and (b) evaluate S(5x5y)dS\iint_S (5x -5y)dS

  1. Find the area of S
    1. Compute the tangent and normal vectors
      Tu=Φu=2,1,3Tv=Φv=0,1,1T_u = \frac{\partial \Phi}{\partial u} = \langle 2 , 1, 3\rangle \quad \Big | \quad T_v = \frac{\partial \Phi}{\partial v} = \langle 0, -1, 1 \rangle
    2. Compute the normal vector NN
      N=Tu×Tv=[ijk 213 011]=4i2j2kN = T_u \times T_v = \begin{bmatrix} i & j & k \ 2 & 1 & 3 \ 0 & -1 & 1\end{bmatrix} = 4i -2j -2k
    3. Find the length of the normal vector
      N=(4)2+(2)2+(2)2=26||N|| = \sqrt{(4)^2 + (-2)^2 + (-2)^2} = 2\sqrt{6}
      dS=26 dudvdS = 2\sqrt{6}\space dudv
    4. Calculate the surface area
      area(S)=DNdudv=260101v2dudv=3π2area(S) = \iint_D ||N|| dudv = 2\sqrt{6} \int_0^1 \int_0^{\sqrt{1-v^2}} dudv = \frac{\sqrt{3}\pi }{\sqrt{2}}
  2. Find S(5x5y)dS\iint_S (5x -5y) dS (hint use polar coordinates)
    1. Convert to dudv
      f(x=2u+1,y=uv,z=3u+v)=5(2u+1)5(uv)f(x=2u + 1,y = u-v, z = 3u+v) = 5(2u+1)-5(u-v)
      f=10u+55u+5v=5u+5v+5f=10u + 5 - 5u + 5v = 5u + 5v + 5
    2. Set up the integral
      S(5u+5v+5)dS=26005(u+v+1)dudv\iint_S (5u+5v+5)dS = 2 \sqrt{6} \int^{}_0 \int_0 5(u+v+1)dudv
  3. =260π/2015r(rcosθ+rsinθ+1)drdθ=106(π4+23)=2 \sqrt{6} \int^{\pi/2}_0 \int^1_0 5r(r\cos\theta+r\sin\theta+1)drd\theta = 10\sqrt{6}\left(\frac{\pi }{4}+\frac{2}{3}\right)

Calculate Sf(x,y,z)dS\iint_S f(x,y,z) dS for the given surface and function
Φ(u,v)=(ucos(v),usin(v),u),0u1,0v1\Phi(u,v) = (u\cos(v), u\sin(v), u), \quad 0 \le u \le 1, \quad 0 \le v \le 1
f(x,y,z)=9z(x2+y2)Sf(x,y,z)dS=?f(x,y,z) = 9z(x^2 + y^2) \quad \Big | \quad \iint_S f(x,y,z) dS=?

  1. Find the area of S
    1. Find the partial derivatives of Φ\Phi
      Fu=Φu=cos(v),sin(v),1Fv=Φv=usin(v),ucos(v),0F_u = \frac{\partial \Phi}{\partial u} = \langle \cos(v) , \sin(v), 1\rangle \quad \Big | \quad F_v = \frac{\partial \Phi}{\partial v} = \langle -u\sin(v), u\cos(v), 0 \rangle
    2. Cross multiply to find the normal vector
      N=Fu×Fv=[ijk cos(v)sin(v)1 usin(v)ucos(v)0]=ucos(v),usin(v),uN = F_u \times F_v = \begin{bmatrix} i & j & k \ \cos(v) & \sin(v) & 1 \ u\sin(v) & u\cos(v) & 0\end{bmatrix} = \langle -u\cos (v), u \sin (v), u \rangle
      Fu×Fv=u2cos2(v)+u2sin2(v)+u2=u1+1=u2|| F_u \times F_v || = \sqrt{u^2\cos^2 (v) + u^2 \sin^2 (v) + u^2} = u\sqrt{1 + 1} = u\sqrt{2}
  2. Translate f(x,y,z)f(x,y,z) to f(u,v)f(u,v)
  3. Sf(Φ(u,v))Fu×Fv=01019u3u2dudv=925\iint_Sf(\Phi(u,v)) \cdot ||F_u \times F_v || = \int^1_0 \int^1_0 9u^3 \cdot u \sqrt{2}dudv = \frac{9\sqrt{2}}{5}

Calculate S11dS\iint_S 11 dS for the surface S:y=4z2,0xz2S: y = 4-z^2, \quad 0 \le x \le z \le 2

  1. Find the area of S
    1. Take partial derivatives of S
      Fx=0,Fy=1,Fz=2zF_x = 0, \quad F_y = 1, \quad F_z = -2z
    2. Find normalzied vector
    F=02+12+(2z)2=1+4z2||F || = \sqrt{0^2 + 1^2 + (-2z)^2} = \sqrt{1 + 4z^2}
  2. Take the integral
    1. Set bounds for integral
      z=02x=0z11dS\int^2_{z=0} \int^z_{x=0} 11dS
    2. Multiply by normalzied vector
  3. z=02x=0z111+4z2dxdz=11(17171)12\int^2_{z=0} \int^z_{x=0} 11\sqrt{1 + 4z^2}dxdz = \frac{11(17\sqrt{17}-1)}{12}

Find the surface area of the part of the cone x2+y2=z2x^2 + y^2 = z^2 between the planes z=3z=3 and z=12z=12

  1. Find the area
    area(S)=DN(u,v)dudvdS=N(u,v)dudvarea(S) = \iint_D ||N(u,v)|| dudv \quad \Big | \quad dS = ||N(u,v)||dudv
  2. Start by writing the parametrization of the surface SS in polar coordinates
    G(u,v)=(ucos(v),usin(v),u)G(u,v) = (u \cos (v), u \sin (v), u)
    D:0v2π3u12 D: 0 \le v \le 2\pi \quad \quad 3 \le u \le 12
  3. Find the tangent vectors using partial derivatives Tu=Gu=u(ucos(v),usin(v),u)=(cos(v),sin(v),1)T_u = \frac{\partial G}{\partial u} = \frac{\partial}{\partial u}(u \cos (v), u \sin (v), u) = (\cos (v), \sin (v), 1) Tv=Gv=v(ucos(v),usin(v),u)=(usin(v),ucos(v),0)T_v = \frac{\partial G}{\partial v} = \frac{\partial}{\partial v}(u \cos (v), u \sin (v), u) = (-u\sin (v), u\cos (v), 0)
    1. Find the normal vector of the tangent vectors
      N=Tu×Tv=[ijk cos(v)sin(v)1 usin(v)ucos(v)0]=ucos(v),usin(v),uN = T_u \times T_v = \begin{bmatrix} i & j & k \ \cos(v) & \sin(v) & 1 \ -u\sin(v) & u\cos(v) & 0\end{bmatrix} = \langle -u\cos (v), u \sin (v), u \rangle
  4. Find the length of the vector NN through N||N||
    N=(ucos(v))2+(usin(v))2+u2=u2||N|| = \sqrt{(-u\cos (v))^2 + (u \sin (v))^2 + u^2 } = u\sqrt{2}
  5. Using the formula Area(S)=DNdudvArea(S) = \iint_D ||N|| dudv
  6. 02π312u2dudv=1352π\int^{2\pi}_0 \int^{12}_3 u\sqrt{2}dudv = 135 \sqrt{2}\pi

Calculate Sx2zdS\iint_S x^2 z dS where SS is the cylinder (including the top and bottom) x2+y2=4x^2 + y^2 = 4 over 0z40 \le z \le 4.

  1. The integral over surface is just the sum of the integrals over the faces. Calculate the surface integral for each of the three faces.
  2. Bottom face integral
    1. Find the bounds of the surface
      S1:ϕ(x,y)=(x,y,0)S_1 : \phi (x,y) = (x,y,0)
    2. Take the integral
      S1x2zdS=D1x20n1dxdy=0\iint_{S_1} x^2 zdS = \iint_{D_1}x^2 \cdot 0 \cdot ||n_1 || dxdy = 0
  3. Top integral
    1. Find the surface parametrization
      S2:ϕ(x,y)=(x,y,4)S_2: \phi (x,y) = (x,y,4)
    2. Take the partial integrals and integrate
      Tx=(1,0,0),Ty=(0,1,0)Tx×Ty=(0,0,1)T_x = (1,0,0), T_y = (0,1,0) \rightarrow T_x \times T_y = (0,0,1)
    3. Integrate
      S2x2zdS=D2x2zTx×Tydxdy\iint_{S_2} x^2z dS = \iint_{D_2} x^2 \cdot z \cdot ||T_x \times T_y||dxdy
      02π02x241dxdy=16π\int^{2\pi}_0 \int^2_0 x^2 \cdot 4 \cdot 1dxdy=16\pi
  4. Side integral
    1. Find side parametrization
      S3:ϕ(θ,z)=(2cos(θ),2sin(θ),z)S_3: \phi(\theta, z) = (2\cos(\theta), 2\sin(\theta), z)
      Tθ=(2sin(θ),2cos(θ),0)Tz=(0,0,1)T_\theta = (-2\sin(\theta), 2\cos(\theta), 0) \quad T_z = (0,0,1)
    2. Find Tθ×Tz||T_\theta \times T_z||
      Tθ×Tz=2||T_\theta \times T_z|| = 2
    3. Plug in
      S3x2zdS=02π04(2cosθ)2z2dzdθ=64π\iint_{S_3} x^2z dS = \int^{2\pi}_0 \int^4_0 (2\cos\theta)^2 \cdot z \cdot 2 dzd\theta = 64\pi
  5. Add all the compontents of the cylinder together because of [[line and surface integrals#Theorem 3 Properties of Vector Line Integrals|additivity principle]]
    Sx2zdS=0+16π+64π=80π\iint_S x^2zdS = 0 + 16\pi + 64 \pi = 80\pi
Theorem 2: Gravitational Pontential of a Uniform Hollow Sphere

The gravitational potential VV due to a hollow sphere of radius RR with uniform mass distribution of total mass mm at a point PP located at a distance rr from the center of the sphere is…

V(P)={Gmrif r>R(P outside the sphere) GmRif rR(P inside the sphere)V(P) = \begin{cases} \frac{-Gm}{r} & \text{if } r > R \quad \text{(P outside the sphere)} \ \frac{-Gm}{R} & \text{if } r \leq R \quad \text{(P inside the sphere)} \end{cases}

16.5 Surface Integrals of Vector Fields

Flux integrals, or rates of flow through a surface. The orientation of a flux can vary with specifying vectors n(P)n(P) to point upward and n(P)-n(P) to point inside the sphere.

Normal Component on a Vector Field

normal compontent at P=F(P)n(P)=F(P)cosθ\text{normal compontent at } P=F(P) \cdot n(P) = ||F(P) || \cos \theta
where θ\theta is the angle between field F(P)F(P) and [[vectors#Unit Vector Normalizing a Vector|normal vector]] n(P)n(P).
vector surface integral=S(Fn)dS\text{vector surface integral} = \iint_S (F \cdot n) dS

Reminder: [[line and surface integrals#Theorem 1 Surface Integrals and Surface Area|Scalar Surface Integral]]

Theorem 1: Vector Surface Integral

Let G(u,v)G(u,v) be an oriented parametrization of a surface SS with parameter domain DD. Assume that GG is one-to-one and regular, except possibly at points on the boundary of DD. Then
S(Fn)dS=DF(G(u,v))N(u,v)dudv\iint_S (F \cdot n) dS = \iint_D F(G(u,v)) \cdot N(u,v) dudv
If the orientation of SS is reversed, the surface integral changes sign.

Fluid Flux

Flow rate is the volume of water that flows through the net per unit time.

To compute the flow rate…

  1. v(P)v(P) is the velocity vector field at point PP
  2. Flow Rate through surface SS is equal to the surface integral of vv over SS

parallel / straight flow rate=velocityarea=v0A\text{parallel / straight flow rate} = \text{velocity} \cdot \text{area} = ||v_0|| A
Points can also be visualizes as blocks, as shown below

flow rate at an angle=velocityareacosθ=Av0cosθ\text{flow rate at an angle} = \text{velocity} \cdot \text{area} \cdot \cos\theta = A||v_0||\cos \theta

Flow Rate Through a Surface

For a fluid with velocity vector field v,
flow rate across the surface=SvdS\text{flow rate across the surface} = \iint_S v \cdot dS

Electric and Magnetic Fields

Faraday’s Law of Induction

CEdr=ddtSBdS\int_C E \cdot dr = -\frac{d}{dt} \iint_S B \cdot dS

  1. EE is the electric field
  2. BB is the magnetic field

Compute SFdS\iint_S F \cdot dS for F=xy,7y,0F = \langle xy, 7y, 0 \rangle S being the cone z2=x2+y2,x2+y216,z0z^2 =x^2 + y^2 , x^2 + y^2 \le 16, z \ge 0 with the normal pointing downward

  1. Paramatrize the given surface
    1. T(t,θ)=tcosθ,tsinθ,t0t40θ2πT(t , \theta) = \langle t\cos \theta, t \sin \theta, t \rangle \quad \quad 0 \le t \le 4 \quad 0 \le \theta \le 2\pi
  2. Take the partial integrals of T(u,v)T(u,v)
    1. Ft=cosθ,sinθ,1Fθ=tsinθ,tcosθ,0F_t = \langle \cos \theta, \sin \theta, 1 \rangle \quad \quad F_\theta = \langle -t\sin \theta, t\cos \theta, 0 \rangle
  3. Cross Multiply Tu×TvT_u \times T_v
    1. [ijk tsinθtcosθ0 cosθsinθ1]=tcosθ,tsinθ,t\begin{bmatrix} i & j & k \ -t\sin \theta & t\cos \theta & 0 \ \cos \theta & \sin \theta & 1 \end{bmatrix} = \langle t \cos \theta, t\sin \theta, -t \rangle
  4. Plug in for F(u,v)F(u,v)
    1. F(t,θ)=tcosθtsinθ,7tsinθ,0=t2sinθcosθ,7,0F(t, \theta) = \langle t\cos\theta \cdot t \sin \theta, 7t \sin \theta, 0 \rangle = \langle t^2\sin\theta\cos\theta, 7, 0 \rangle
  5. Find F(u,v)(Tu×Tv)F(u,v) \cdot (T_u \times T_v)
    1. F(θ,t)(Fθ×Ft)=t2sinθcosθ,7,0tcosθ,tsinθ,tF(\theta ,t) \cdot (F_\theta \times F_t) = \langle t^2\sin\theta\cos\theta, 7, 0 \rangle \cdot \langle t \cos \theta, t\sin \theta, -t \rangle
    2. =t3cos2θsinθ+7t2sin2θ= t^3\cos^2\theta\sin\theta + 7t^2 \sin^2 \theta
  6. Integrate
    1. 02π04t3cos2θsinθ+7t2sin2θdtdθ=448π3\int_0^{2\pi}\int^4_0 t^3\cos^2\theta\sin\theta + 7t^2 \sin^2 \theta dtd\theta = \frac{448\pi}{3}

Let v=5zv = 5zk be the velocity field of a fluid in R3R^3. Calculate the flow rate through the upper hemisphere (z0z \ge 0) of the sphere x2+y2+z2=4x^2 + y^2 + z^2 = 4

  1. We use spherical coordinates
    1. x=2cosθsinϕy=2sinθsinϕz=2cosϕx = 2\cos\theta \sin \phi \quad y = 2\sin \theta \sin \phi \quad z = 2\cos \phi
  2. Find TθT_\theta and TϕT_\phi
    1. Tθ=2sinθsinϕ,2cosθsinϕ,0Tϕ=2cosθcosϕ,2sinθcosϕ,2sinϕT_\theta = \langle -2\sin\theta \sin\phi, 2\cos\theta\sin\phi, 0 \rangle \quad T_\phi = \langle 2\cos\theta\cos\phi, 2\sin\theta\cos\phi, -2\sin\phi \rangle
  3. Find the normal vector
    1. N = T_\phi \times T_\theta = \begin{bmatrix} i & j & k \-2\sin\theta\sin\phi & 2\cos\theta\sin\phi & 0 \ 2\cos\theta\cos\phi & 2\sin\theta\cos\phi & -2\sin\phi \end{bmatrix}=
    2. =4cosθsin2ϕ0,(4sinθsin2ϕ),4sin2θsinϕcosϕ4cos2θsinϕcosϕ=\langle 4\cos\theta\sin^2\phi - 0, -(-4\sin\theta\sin^2\phi), -4\sin^2\theta\sin\phi\cos\phi - 4\cos^2\theta\sin\phi\cos\phi \rangle
    3. =4cosθsin2ϕ,4sinθsin2ϕ,4sinϕcosϕ(1)=\langle -4\cos\theta\sin^2\phi, - 4\sin\theta\sin^2\phi, -4\sin\phi\cos\phi(1) \rangle
  4. Plug in for vv
    1. v=5zk=0,0,10cosϕv=5zk = \langle 0, 0, 10\cos\phi \rangle
  5. Plug in and find the dot product
    1. SvdS=π/2<em>ϕ=02π</em>θ=040sinϕcos2ϕdθdϕ=80π3\iint_S v \cdot dS = \int^{\pi/2}<em>{\phi=0} \int^{2\pi}</em>{\theta=0} 40\sin\phi\cos^2\phi d\theta d\phi = \frac{80\pi}{3}

Let SS be the ellipsoid (x4)2+(y3)2+(z3)2=1(\frac{x}{4})^2 + (\frac{y}{3})^2 + (\frac{z}{3})^2=1 Calculate the flux of F=ziF=zi over S1S_1, the upward-pointing normal. Parametrize SS using a modified form of spherical coordinates (θ,ϕ)(\theta, \phi) using SFdS\iint_S F \cdot dS

  1. Use the coordinates
    1. x=4cosθsinϕy=3sinθsinϕz=3cosϕx = 4\cos\theta \sin \phi \quad y = 3\sin \theta \sin \phi \quad z = 3\cos \phi
  2. Find TθT_\theta and TϕT_\phi
    1. Tθ=4sinθsinϕ,3cosθsinϕ,0Tϕ=4cosθcosϕ,3sinθcosϕ,3sinϕT_\theta = \langle -4\sin\theta \sin\phi, 3\cos\theta\sin\phi, 0 \rangle \quad T_\phi = \langle 4\cos\theta\cos\phi, 3\sin\theta\cos\phi, -3\sin\phi \rangle
  3. Find the cross product of TθT_\theta and TϕT_\phi
    1. N=Tθ×Tϕ=ijk4cosθcosϕ3sinθcosϕ3sinϕ4sinθsinϕ3cosθsinϕ0N = T_\theta \times T_\phi = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4\cos\theta\cos\phi & 3\sin\theta\cos\phi & -3\sin\phi \\ -4\sin\theta\sin\phi & 3\cos\theta\sin\phi & 0 \end{vmatrix}
    2. =9cosθsin2ϕ,12sinθsin2ϕ,12cosϕsinϕ = \langle 9\cos\theta\sin^2\phi, 12\sin\theta\sin^2\phi, 12\cos\phi\sin\phi \rangle
  4. Plug in for equation F=ziF=zi
    1. 3cosϕ,1,0\langle 3\cos\phi, 1,0 \rangle
  5. Solve SFdS\iint_S F \cdot dS
    1. SFdS=0π02π3cosϕ,1,09cosθsin2ϕ,12sinθsin2ϕ,12cosϕsinϕ\iint_S F \cdot dS = -\int^\pi_0 \int^{2\pi}_0 \langle 3\cos\phi, 1,0 \rangle \cdot \langle 9\cos\theta\sin^2\phi, 12\sin\theta\sin^2\phi, 12\cos\phi\sin\phi \rangle
    2. =π/2π3π/2π27cosθsin2ϕcosϕ+9cosθsin2ϕdθdϕ= \int^{\pi}_{\pi/2} \int^{3\pi/2}{\pi} 27\cos\theta\sin^2\phi\cos\phi + 9\cos\theta\sin^2\phi d\theta d \phi

Homework 11

Question 1:

(1) We have a thin metal plate on the part of x2+y29x^2 + y^2 \le 9 in the first quadrant which has a density of ρ(x,y)=KxK3y\rho(x,y) = Kx - K^3 y, in kg/m3kg/m^3. Determine the value of KK which makes the metal plate have the maximum mass, and then determine this maximal mass.

  1. mass = Sδ(x,y,z)dS\iint_S \delta (x,y,z)dS
  2. g(x,y)=x2+y29g(x,y) = x^2 + y^2 - 9
    1. gx=2xg_x = 2x
    2. gy=2yg_y = 2y
  3. Find dSdS
    1. dS=1+gx2+gy2dxdy=1+4x2+4y2dydxdS = \sqrt{1 + g_x^2 + g^2_y}dxdy = \sqrt{1 + 4x^2 + 4y^2}dydx
  4. Find x
    1. x=9y2x = \sqrt{\frac{9}{y^2}}
  5. Plug in x
    1. ρ(x,y)=K(9y2)K3y=3KyK3y\rho(x,y) = K(\sqrt{\frac{9}{y^2}}) - K^3 y = \frac{3K}{y} - K^3 y
    2. 3K=K3y23K = K^3y^2 ; y2=3K2y^2 = 3K^2; K=y2/3K = \sqrt{y^2/3}
  6. Plug in y
  7. ANS: K=13K = \frac{1}{\sqrt{3}}
Question 2:

(2) An object is moving along the path t2,tt3\langle t^2, t-t^3 \rangle for which starting when t=1t = -1. The object is in the presence of a force field F(x,y)=y,xF(x,y) = \langle y, x \rangle

  1. Find a function which calculates the work done by the vector field if the object moves until t=Tt=T?
    1. r(t)=t2,tt3r(t) = \langle t^2, t-t^3 \rangle
    2. r(t)=2t,13t2r'(t) = \langle 2t, 1-3t^2 \rangle
    3. F(r(t))=tt3,t2F(r(t)) = \langle t - t^3, t^2 \rangle
    4. 1TF(r(t))r(t)=tt3,t22t,13t2=1T2t22t4+t23t4\int^T_{-1} F(r(t)) \cdot r'(t) = \langle t - t^3, t^2 \rangle \cdot \langle 2t, 1-3t^2 \rangle = \int^T_{-1} 2t^2 - 2t^4 + t^2 - 3t^4
    5. =1T5t4+3t2=t3t51T=T3T50=T3T5= \int^T_{-1} -5t^4 + 3t^2 = t^3 -t^5 \Big |^T_{-1} = T^3 - T^5 - 0 = T^3-T^5
    6. ANS: T3T5T^3 - T^5
  2. After how many seconds is the work done maximized?
    1. ddT(T3T5)=3T25T4\frac{d}{dT}(T^3 - T^5) = 3T^2 - 5T^4
    2. T2(35T2)T^2(3 - 5T^2)
    3. separate T and take the square root
    4. ANS: 35\sqrt{\frac{3}{5}}

Question 4:

(4) A wire is parametrized by t22,5t3,3t2\langle \frac{t^2}{2}, 5t-3, 3-t^2 \rangle from 0t10 \le t \le 1.

  1. The density of the wire is given ρ(x,y,z)=x\rho(x,y,z) = \sqrt{x} g/cm. What is the total mass of the wire?
    1. f(r(t))r(t)dtf(r(t)) ||r'(t)||dt
    2. Find r(t)r'(t)
      1. r(t)=t,5,2tr'(t) = \langle t, 5, -2t \rangle
      2. r(t)=t2+52+(2t)2=5t2+25||r'(t)|| = \sqrt{t^2 + 5^2 + (-2t)^2} = \sqrt{5t^2 + 25}
    3. Find f(r(t))f(r(t))
      1. F(r(t))=t22F(r(t)) = \sqrt{\frac{t^2}{2}}
      2. f(r(t))r(t)=t225t2+25=t5t2+252f(r(t)) \cdot ||r'(t)|| = \sqrt{\frac{t^2}{2}} \cdot \sqrt{5t^2 + 25} = \frac{t\sqrt{5t^2+25}}{\sqrt{2}}
    4. Integrate
      1. 01t5t2+252=1152(5t2+25)3/201=1152(3030125)\int^1_0 \frac{t\sqrt{5t^2+25}}{\sqrt{2}} = \frac{1}{15 \sqrt{2}}(5t^2 + 25)^{3/2} \Big |^1_0 = \frac{1}{15 \sqrt{2}} (30 \sqrt{30} - 125)
    5. ANS: 1152(3030125)\frac{1}{15 \sqrt{2}} (30 \sqrt{30} - 125)
  2. An electric field is given by E(x,y,z)=y+3,2x,2x+zE(x,y,z) = \langle y + 3, 2x, 2x + z \rangle. What is the work done by the field on an electron moving along the parametrization
    1. F(r(t))r(t)dt\int F(r(t)) \cdot r'(t)dt
    2. F(r(t))=t22F(r(t)) = \sqrt{\frac{t^2}{2}}
    3. F(r(t))r(t)dt=(t,0,0)t,5,2tF(r(t)) \cdot r'(t)dt = (t, 0,0) \cdot \langle t, 5, -2t \rangle
    4. 01t2=t3301=130=13\int^1_0 t^2 = \frac{t^3}{3} \Big |^1_0 = \frac{1}{3} - 0 = \frac{1}{3}
    5. ANS: 1/31/3

Question 5:

(5) For the following vector fields and surfaces, calculate the flux integral SFdS\iint_S F \cdot dS

  1. F(x,y,z)=1+z,2,yF(x,y,z) = \langle 1 + z, -2, y \rangle and SS is the part of the plane x+3y+2z=6x + 3y + 2z = 6 which lies in the first octant, oriented away from the origin.
    1. SFdS=DF(G(u,v))N(u,v)dudv\iint_S F \cdot dS = \iint_D F(G(u,v)) \cdot N(u,v) dudv
    2. Find parametrization:
      1. z=6x3y2z = \frac{6 - x - 3y}{2}
      2. f(x,y)=x,y,6x3y2f(x,y) = \langle x, y, \frac{6 - x - 3y}{2} \rangle
    3. Find the partial derivatives of f(x,y)f(x,y)
      1. fx=(1,0,12)f_x = (1, 0, -\frac{1}{2})
      2. fy=(0,1,3y2)f_y = (0, 1, \frac{-3y}{2})
    4. Cross multiply fxf_x and fyf_y
      1. N(u,v)=fx×fy=[ijk 101/2 013/2]=(12,32,1)N(u,v) = f_x \times f_y = \begin{bmatrix}i & j & k \ 1 & 0 & -1/2 \ 0 & 1 & -3/2 \end{bmatrix} = \Big (\frac{1}{2}, \frac{3}{2}, 1 \Big )
    5. Calculate FN(u,v)F \cdot N(u,v)
      1. FN(u,v)=1+z,2,y(12,32,1)=1+z23+yF \cdot N(u,v) = \langle 1 + z, -2, y \rangle \cdot \Big (\frac{1}{2}, \frac{3}{2}, 1 \Big ) = \frac{1 + z}{2} -3 + y
    6. Integrate SFdS=DF(G(u,v))N(u,v)dudv\iint_S F \cdot dS = \iint_D F(G(u,v)) \cdot N(u,v) dudv
      1. 0y20 \le y \le 2
      2. 0x63y0 \le x \le 6-3y
      3. 1+z23+y=1+6x3y223+y=8x3y12+4y4\frac{1 + z}{2} -3 + y = \frac{1 + \frac{6 - x - 3y}{2}}{2} -3 + y = \frac{8-x-3y-12+4y}{4}
      4. 8x3y12+4y4=14(x+y4)\frac{8-x-3y-12+4y}{4} = \frac{1}{4} (-x+y-4)
      5. 1402063y(x+y4)dxdy\frac{1}{4}\int^2_0 \int_0^{6-3y} (-x + y -4)dxdy
      6. Calculate the inner integral
        1. 063y(x+y4)dx=x22+y224x063y=\int_0^{6-3y} (-x + y -4)dx = -\frac{x^2}{2} + \frac{y^2}{2} - 4x \Big |_0^{6-3y} =
        2. =3y2+18y(3y+6)2224=-3y^2+18y-\frac{\left(-3y+6\right)^2}{2}-24
      7. Calculate outer integral
        1. 1402(3y2+18y(3y+6)2224)dy\frac{1}{4} \int^2_0 (-3y^2+18y-\frac{\left(-3y+6\right)^2}{2}-24) dy
        2. =14(y3+9y2(3y6)31824y02=20+12=8=\frac{1}{4} (-y^3 + 9y^2 - \frac{(3y - 6)^3}{18} -24y \Big|^2_0 = -20 + 12 = -8
    7. ANS: 8-8
  2. F(x,y,z)=z,y,xF(x,y,z) = \langle z, y, x\rangle and SS is the part of the parabolic cylinder z=1x2z = 1 −x^2 which lies above the xy-plane and between y=0y = 0 and y=2y = 2, oriented upwards.
    1. Find the parametrization
      1. r(u,v)=(u,v,1u2)r(u,v) = (u, v, 1-u^2)
      2. ru=(1,0,2u)r_u = (1, 0, -2u)
      3. rv=(0,1,0)r_v = (0, 1, 0)
    2. Cross multiply rur_u and rvr_v
      1. ru×rv=(2u)i0j+(1)k=(2u,0,1)r_u \times r_v = - (-2u)i - 0j + - (-1)k = (2u, 0, 1)
    3. Integrate
      1. SFN(u,v)dS=0211(2u2u3+u)dudv\iint_S F \cdot N(u,v)dS = \int^2_0 \int^1_{-1} (2u-2u^3 + u) dudv
      2. Inner integral
        1. 11(2u2u3+u)du=u2u42+u2211=11=0\int^1_{-1} (2u-2u^3 + u) du = u^2 - \frac{u^4}{2} + \frac{u^2}{2} \Big|^1_{-1} = 1-1 = 0
        2. No need to calculate the other integral
      3. ANS: 00
  3. F(x,y,z)=y,x,2zF(x,y,z) = \langle y, x, 2z \rangle and SS is the unit sphere, oriented upwards
    1. Find the parametrization
      1. r(u,v)=(cosusinv,sinusinv,cosv)r(u,v) = (\cos u \sin v, \sin u \sin v, \cos v)
      2. ru=(sinusinv,cosusinv,0)r_u = (-\sin u \sin v, \cos u \sin v, 0)
      3. rv=(cosucosv,sinucosv,sinv)r_v = (\cos u \cos v, \sin u \cos v, -\sin v)
    2. Cross multiply
      1. N=ru×rv=[ijk sinusinvcosusinv0 cosucosvsinucosvsinv]N = r_u \times r_v = \begin{bmatrix} i & j & k \ -\sin u \sin v & \cos u \sin v & 0 \ \cos u \cos v & \sin u \cos v & -\sin v \end{bmatrix}
      2. N=(cosusin2v,sinusin2v,sin2usinvcosvcos2sinvcosv)N = (-\cos u \sin ^2 v, -\sin u \sin^2 v, -\sin^2 u \sin v \cos v - \cos^2 \sin v \cos v)
      3. N=(cosusin2v,sinusin2v,sinvcosv)N = (-\cos u \sin ^2 v, -\sin u \sin^2 v, -\sin v \cos v)
    3. Bounds
      1. Unit sphere = 0θ2π0 \le \theta \le 2\pi and 0ϕ2π0 \le \phi \le 2\pi
    4. Integrate SFdS=DF(G(u,v))N(u,v)dudv\iint_S F \cdot dS = \iint_D F(G(u,v)) \cdot N(u,v) dudv
      1. 02π02π(cosusinv,sinusinv,cosv)(cosusin2v,sinusin2v,sinvcosv)dudv\int_0^{2\pi} \int_0^{2\pi} (\cos u \sin v, \sin u \sin v, \cos v) \cdot (-\cos u \sin ^2 v, -\sin u \sin^2 v, -\sin v \cos v)dudv
      2. 02π02π(cos2usin3vsin2usin3vsinvcos2v)dudv\int_0^{2\pi} \int_0^{2\pi} (-\cos^2 u \sin^3 v -\sin^2 u \sin^3 v -\sin v \cos^2 v)dudv

Question 6:

(6) Consider a parabolic solar panel which lies in the part of z=x2+y2z = x^2 + y^2 below the plane z=1z = 1 which is oriented downwards. A field of photons is given by (x2,y2,z)(x^2, y^2, -z). Calculate the flux of the photon field through the solar panel.

  1. Variables
    1. F=(x2,y2,z)F = (x^2, y^2, -z)
    2. T(r,θ)=(rcosθ,rsinθ,r)T(r, \theta) = (r \cos \theta, r \sin \theta, r)
      1. Tr=(cosθ,sinθ,1)T_r = ( \cos \theta, \sin \theta, 1)
      2. Tθ=(rsinθ,rcosθ,0)T_\theta = (-r \sin \theta, r \cos \theta, 0)
    3. Cross multiply
      1. N=Tr×Tθ=(rcosθ,rsinθ,r)N = T_r \times T_\theta = (r \cos \theta, r \sin \theta, -r)
    4. F(r,θ)=(r2cos2θ,r2sin2θ,r)F(r, \theta) = (r^2 \cos^2 \theta, r^2 \sin^2 \theta, -r)
    5. Dot product to get F(r,θ)N(r,θ)F(r, \theta) \cdot N(r, \theta)
      1. F(r,θ)N(r,θ)=(r2cos2θ,r2sin2θ,r)(rcosθ,rsinθ,r)F(r, \theta) \cdot N(r, \theta) = (r^2 \cos^2 \theta, r^2 \sin^2 \theta, -r) \cdot (r \cos \theta, r \sin \theta, -r)
      2. F(r,θ)N(r,θ)=r3cos3θ,r3sinθ,r2F(r, \theta) \cdot N(r, \theta) = r^3\cos^3 \theta, r^3 \sin \theta, r^2
    6. Integrate
      1. 02π01(r3cos3θ+r3sin3θ+r2)rdrdθ\int_0^{2\pi} \int^1_0 (r^3\cos^3 \theta + r^3 \sin^3 \theta + r^2)r drd\theta
      2. Inner integral
        1. 01(r3cos3θ+r3sin3θ+r2)rdr=r5cos3θ5+r5sin3θ5+r4401\int^1_0 (r^3\cos^3 \theta + r^3 \sin^3 \theta + r^2)r dr = \frac{r^5\cos^3 \theta}{5} + \frac{r^5 \sin^3 \theta}{5} + \frac{r^4}{4} \Big |^1_0
        2. r5cos3θ5+r5sinθ5+r4401=cos3θ5+sin3θ5+14\frac{r^5\cos^3 \theta}{5} + \frac{r^5 \sin \theta}{5} + \frac{r^4}{4} \Big |^1_0 = \frac{\cos^3 \theta}{5} + \frac{\sin^3 \theta}{5} + \frac{1}{4}
      3. Compute outer integral
        1. 02πcos3θ5+sin3θ5+14dθ=14θ02π=2π40=π2\int^{2\pi}_0 \frac{\cos^3 \theta}{5} + \frac{\sin^3 \theta}{5} + \frac{1}{4} d\theta = \frac{1}{4}\theta \Big |_0^{2\pi} = \frac{2\pi}{4} - 0 = \frac{\pi}{2}
  2. ANS: π2\frac{\pi}{2}

Question 8:

The concentration of a chemical can be given by the function C(x,y,z)=z1+x2+y2C(x,y,z) = \frac{z}{1 + x^2 + y^2}. By the law of the diffusion, the chemical will begin to flow in the direction where the concentration decreases the fastest. Let S be part of the cylinder x2+y2=1x^2 + y^2 = 1 where x0,y0,0z2x \ge 0, y \ge 0, 0 \le z \le 2, oriented away from the origin. Calculate the flux of the chemical flow through S.

Find where the concentration decreases the fastest

Cx=2zx(1+x2+y2)2C_x = -\frac{2zx}{(1 + x^2 + y^2)^2}

Cy=2zy(1+x2+y2)2C_y = -\frac{2zy}{(1 + x^2 + y^2)^2}

Cz=11+x2+y2C_z = \frac{1}{1 + x^2 + y^2}

Greatest increase = 2zx(1+x2+y2)2,2zy(1+x2+y2)2,11+x2+y2\langle -\frac{2zx}{(1 + x^2 + y^2)^2}, -\frac{2zy}{(1 + x^2 + y^2)^2}, \frac{1}{1 + x^2 + y^2} \rangle

Least increase = 2zx(1+x2+y2)2,2zy(1+x2+y2)2,11+x2+y2\langle \frac{2zx}{(1 + x^2 + y^2)^2}, \frac{2zy}{(1 + x^2 + y^2)^2}, -\frac{1}{1 + x^2 + y^2} \rangle

Find the flux

Flow rate = SvdS\iint_S v \cdot dS

r(u,v)=cosv,sinv,ur(u,v) = \langle \cos v, \sin v, u \rangle

ru=0,0,1r_u = \langle 0, 0, 1 \rangle

rv=sinv,cosv,0r_v = \langle -\sin v, \cos v, 0 \rangle

N=ru×rv=cosv,sinv,0N = r_u \times r_v = \langle -\cos v, -\sin v, 0 \rangle

SC(u,v)dS=2(u)(cosv)(1+(cosv)2+(sinv)2)2,2(u)(sinv)(1+(cosv)2+(sinv)2)2,11+(cosv)2+(sinv)2cosv,sinv,0\iint_S \nabla C(u, v) \cdot dS = \langle \frac{2(u)(\cos v)}{(1 + (\cos v)^2 + (\sin v)^2)^2}, \frac{2(u)(\sin v)}{(1 + (\cos v)^2 + (\sin v)^2)^2}, -\frac{1}{1 + (\cos v)^2 + (\sin v)^2} \rangle \cdot \langle -\cos v, -\sin v, 0 \rangle

Dot product of C(u,v)C(u,v) and dSdS

2ucosv(1+cos2v+sin2v)2,2usinv(1+cos2v+sin2v)2cosv,sinv=2ucos2v(1+cos2v+sin2v)22usin2v(1+cos2v+sin2v)2\langle \frac{2u\cos v}{(1 + \cos^2 v + \sin^2 v)^2}, \frac{2u\sin v}{(1 + \cos^2 v + \sin^2 v)^2} \rangle \cdot \langle -\cos v, -\sin v \rangle =\frac{2u\cos^2 v}{(1 + \cos^2 v + \sin^2 v)^2} - \frac{2u\sin^2 v}{(1 + \cos^2 v + \sin^2 v)^2}

ucos2vusin2vu\cos^2 v - u\sin^2 v

11602π02ucos2vusin2dudv=11602π02u3\frac{1}{16}\int_0^{2\pi} \int^2_0 u\cos^2 v - u\sin^2 dudv = \frac{1}{16}\int_0^{2\pi} \int^2_0 u^3

Inner integral

u4402=40=4\frac{u^4}{4} \Big |^2 _0 = 4 - 0 = 4

Outer integral

11602π4=π/2\frac{1}{16}\int^{2\pi}_0 4 = \pi/2

ANS: π/2\pi/2


Question 9: D

(9) Calculate the following line integrals using the fundamental theorem of line integrals; be sure to check that the vector fields are conservative

CFdr\int_C F \cdot dr, where F(x,y)=4xyex2,2ex23y2F(x,y) = \langle 4xye^{x^2}, 2e^{x^2} -3y^2 \rangle where CC is the path along (5t4t2+t3,3+3t2t2)(5t - 4t^2 + t^3, 3 + 3t - 2t^2) for 0t20 \le t \le 2

Calculate the [[line and surface integrals#Curl|curl]] of FF

Curl(F)=[xy 4xyex22ex23y2]=4xex24xex2=0Curl(F) = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \ 4xye^{x^2} & 2e^{x^2} - 3y^2 \end{bmatrix} = 4xe^{x^2} - 4xe^{x^2} = 0

t=0:5(0)4(0)2+(0)3,3+3(0)2(0)2=(0,3)t=0: 5(0) - 4(0)^2 + (0)^3, 3 + 3(0) - 2(0)^2 = (0,3)

t=2:5(2)4(2)2+(2)3,3+3(2)2(2)2=(2,1)t=2: 5(2) - 4(2)^2 + (2)^3, 3 + 3(2) - 2(2)^2 = (2, 1)

Find F\nabla F

F=(8xyex2,6y)\nabla F = (8xye^{x^2}, -6y) \cdot

Plug into equation

F(0,3)=2(0)e(0)2(3)3=27F(0, 3) = 2(0)e^{(0)^2} - (3)^3 = -27

F(2,1)=2(2)e(2)2(1)3=4e41F(2,1) = 2(2)e^{(2)^2} - (1)^3 = 4e^4 - 1

F(2,1)F(0,3)=4e41(27)=4e4+26F(2, 1) - F(0, 3) = 4e^4 - 1 - (-27) = 4e^4 + 26

ANS: 4e4+264e^4 + 26

C(2xy3z,x2+8y3z,2y43x)\int_C (2xy-3z, x^2 + 8y^3 z, 2y^4 - 3x) where CC is the path cos(πt),3t25t,tsin2(πt/4)\cos (\pi t), 3t^2 - 5t, t \sin^2 (\pi t/4) from (1,0,0)(1, 0,0) to (1,2,2)(1,2,2)

CAdr\oint_C A \cdot dr, where A(x,y,z)=y2z2+1,2xyz2+1,2xy2z(z2+1)2A(x,y,z) = \langle \frac{y^2}{z^2 + 1}, \frac{2xy}{z^2 + 1}, \frac{-2xy^2z}{(z^2 + 1)^2} \rangle and CC is the path along the ellipse 4x2+3xy+y2=104x^2 + 3xy + y^2 = 10 oriented counter-clockwise

Since z2+1z^2 + 1 in each component enables the shape of AA to be a circle, we get the answer of 00

ANS: 00

Question 11:

Consider the vector field F(x,y,z)=(2y+4,2xz2,2yz)F(x,y,z) = (2y + 4, 2x - z^2, -2yz) and the path defined by r(t)=(t2,3+t,t)r(t) = (t^2, 3 + t, -t) for 1t2-1 \le t \le 2.

Calculate the work done by the field along the path

P=r(1)=(1,4,1)P = r(-1) = (1, 4, 1)

Q=r(2)=(4,5,2)Q = r(2) = (4, 5, -2)

f(Q)f(P)=2(5)+4,2(4)(2)2,2(5)(2)2(0)+4,(1)(1)2,2(4)(1)f(Q) - f(P) = 2(5) + 4, 2(4) - (-2)^2, -2(5)(-2) - 2(0) + 4, (1) - (1)^2, -2(4)(1)

=(14,4,20)(4,0,8)=(10,4,28)= (14, 4, 20) - (4, 0, -8) = (10, 4, 28)

102+42+282=30\sqrt{10^2 + 4^2 + 28^2} = 30

ANS: 3030

Show that this vector field is conservative. What theorem does this allow us to use?

The cross-partials equation, which allows us to find the potential function

Find the potential function for this field

F1y=F2xF2z=F3yF3x=F1z\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \quad \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} \quad \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}

F1y=F2x:(2y+4,2xz2,2yz)\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}: (2y + 4, 2x - z^2, -2yz)

2=22=2

F2z=F3y:(2y+4,2xz2,2yz)\frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}: (2y + 4, 2x - z^2, -2yz)

2z=2z-2z = -2z

F3x=F1z:(2y+4,2xz2,2yz)\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}: (2y + 4, 2x - z^2, -2yz)

0=00 = 0

We have a valid vector field

(2y+4)dx=2xy+4x\int (2y + 4)dx = 2xy + 4x

(2xz2)dy=2xyz2y\int (2x - z^2)dy = 2xy - z^2y

(2yz)=yz2\int (-2yz) = -yz^2

Potential function = 2xy+4xz2y2xy + 4x -z^2y

Calculate the potential at the starting and end points of the path

P(P)=2(1)(4)+4(1)(1)2(4)=8P(P) = 2(1)(4) + 4(1) - (1)^2(4) = 8

P(Q)=2(4)(5)+4(4)(2)(5)=40+16+10=66P(Q) = 2(4)(5) + 4(4) - (-2)(5) = 40 + 16 + 10 = 66

What is the difference in potential between these points?

668=5866 - 8 = 58

Potential difference of 58

Question 12:

Consider a particle starting at the point (0,0,1) moving with an acceleration of (4e2t,3,3t2)(4e^{-2t}, 3, 3t^2) and an initial velocity of (5,2,4)(5, 2, -4). The particle is moving through the force field B(x,y,z)=(2y2,4xy,3z2)B(x,y,z) = (2y^2, 4xy, -3z^2)

  1. v(t)=(4e2t,3,3t2)=(2e2t,3t,t3)v(t) = \int (4e^{-2t}, 3, 3t^2) = (-2e^{-2t}, 3t, t^3)
  2. P=(v(0)v(0)=(5,2,4)(2,0,0)=(7,2,4)P = (v(0) - v(0) = (5, 2, -4) - (-2, 0,0) = (7, 2, -4)
  3. v(t)=(2e2t+7,3t+2,t34)v(t) = (-2e^{-2t}+7, 3t + 2, t^3 - 4)
  4. s(t)=v(t)=(2e2t+7,3t+2,t34)=(e2t+7t+C,3t22+2t+C,t444t+C)s(t) = \int v(t) = \int (-2e^{-2t}+7, 3t + 2, t^3 - 4) = (e^{-2t} + 7t + C, \frac{3t^2}{2} + 2t + C, \frac{t^4}{4} - 4t + C)
  5. s(0)=(0,0,1)s(0) = (0,0,1)
  6. s(t)=(e2t+7t1,3t22+2t,t444t+1)s(t) = (e^{-2t} + 7t - 1, \frac{3t^2}{2} + 2t, \frac{t^4}{4} - 4t + 1)
  7. Potential function
  8. fx=2y2xdx=2xy2+Cfx = \int 2y^2 x dx = 2xy^2 + C
  9. fy=4xydy=2xy2+Cfy = \int 4xy dy = 2xy^2 + C
  10. fz=3z2=z3+Cfz = -\int 3z^2 = -z^3 + C
  11. Potential function = f=2xy2z3f = 2xy^2 -z^3
  12. f=2(e2t+7t1)(3t22+2t)(t444t+1)3f = 2(e^{-2t} + 7t - 1)( \frac{3t^2}{2} + 2t) - (\frac{t^4}{4} - 4t + 1)^3
  13. f(2)=2(e2(2)+7(2)1)(3(2)22+2(2))2((2)444(2)+1)3=200e4+2628f(2) = 2(e^{-2(2)} + 7(2) - 1)( \frac{3(2)^2}{2} + 2(2))^2 - (\frac{(2)^4}{4} - 4(2) + 1)^3 = 200e^{-4} + 2628
  14. ANS: 200e4+2628200e^{-4} + 2628