Multiple Integrations

Published September 25, 2022 by Connor
Math
Multiple Integrations

My personal notes for more complex forms of integration.

Some equations might not show on mobile.

15.1 Integration in Two Variables

Double Integral

Integration of two variables

Df(x,y)dA\iint_D f(x,y) dA

  • Volume of region between graph when f(x,y)0f(x,y) \ge 0 on domain DD

Similarities Between Double and Single Integrals:

  • Double Integrals are defined as limits of Riemann sums.
  • Double integrals are evaluated using the Fundamental Theorem of Calculus, but applied twice

Integrals are broken into 3 parts

  1. Subdivision
    Subdivide [a,b][a,b] and [c,d][c,d] by choosing partitions:
  2. a=x0<x1<<xN=b,c=y0<y1<<yM=da=x_0 < x_1 < … <x_N=b, \quad c = y_0<y_1<…<y_M=d
  3. Summation
    Create an N×MN \times M grid of sub-rectangles RijR_{ij}
  4. Passage to the limit
    Choose a sample point PijP_{ij} in each RijR_{ij}
Limit of Riemann Sums

The Riemann sum SN,MS_{N,M} approaches a limit LL as P0||P|| \rightarrow 0 if, for all ϵ\epsilon there exists δ>0\delta > 0 such that

LSN,M<ϵ|L-S_{N,M}| < \epsilon


for all partitions satisfying P<δ||P||<\delta and all choices of sample points. We write

limP0SN,M=limP0i=1Nj=1Mf(Pij)ΔAij=L\lim_{||P|| \rightarrow 0} S_{N,M}= \lim_{||P|| \rightarrow 0}\sum^N_{i=1}\sum^M_{j=1}f(P_{ij})\Delta A_{ij}=L

where

Δx=baN,Δy=dcM\Delta x = \frac{b-a}{N}, \quad \Delta y = \frac{d-c}{M}

Double Integral over a Rectangle

The double integral of f(x,y)f(x,y) over a rectangle RR is defined as the limit. This technique is used to find the volume of an area over a rectangle

Rf(x,y)dA=limP0i=1Nj=1Mf(Pij)ΔAij\iint_R f(x,y)dA=\lim_{||P|| \rightarrow 0} \sum^N_{i=1} \sum^M_{j=1} f(P_{ij})\Delta A_{ij}

Example :: Estimating Double Integral:

Compute the Riemann sum S4,3S_{4,3} to estimate the double integral of f(x,y)=6xyf(x,y)=6xy over R=[1,5]×[1,4]R=[1,5]×[1,4]. Use the regular partition and upper‑right vertices of the sub‑rectangles as sample points.

  1. Calculate length of sides of subrectangle
    Δx=514=1,Δy=413=1,ΔA=ΔxΔy=1\Delta x = \frac{5-1}{4}=1, \quad \Delta y = \frac{4-1}{3}=1, \quad \Delta A= \Delta x \Delta y = 1
  2. Plug into the corresponding Riemann sum
    S4,3=i=1Nj=1Mf(Pij)ΔAij=i=14j=13(6ij)(1)S_{4,3} = \sum^N_{i=1} \sum^M_{j=1} f(P_{ij})\Delta A_{ij}= \sum^4_{i=1}\sum^3_{j=1} (6ij)\cdot (1)
  3. Sum for Regular Partition
Theorem 1: Continuous Functions Are Integrable

If a function ff of two variables is continuous on a rectangle RR, then f(x,y)f(x,y) is integrable over RR

Continuous

A function is continuous when its graph is a single unbroken curve

Theorem 2: Linearity of the Double Integral

Assume that f(x,y)f(x,y) and g(x,y)g(x,y) are integrable over a rectangle RR. Then,
i. R(f(x,y)+g(x,y))dA=Rf(x,y)dA+Rg(x,y)dA\text{i. } \iint_R (f(x,y) + g(x,y))dA = \iint_R f(x,y)dA + \iint_R g(x,y) dA
ii. For any constant CRCf(x,y)dA=CRf(x,y)dA\text{ii. For any constant C…} \iint_R C \cdot f(x,y)dA= C \iint_R f(x,y)dA

Example :: Calculating a iterated integral:

Evaluate the iterated integral…

150π/3x2sin(y)dydx\int^5_1 \int^{\pi / 3} _0 x^2 \sin(y)dy dx

  1. Take the inner integral (x)
  2. x=0π/3x2sin(y)dy=x2[cos(y)]0π/3=x2(cos(π3)cos(0))=x212\int^{\pi / 3}_{x=0} x^2 \cdot \sin(y)dy =\quad x^2 \cdot [-\cos(y)]|^{\pi / 3}_0=x^2(-\cos(\frac{\pi}{3})-\cos(0))=x^2 \cdot \frac{1}{2}
  3. Take the outer integral
  4. 1215x2dx=12[x33]15=12(125313)=623\frac{1}{2}\int^5_1 x^2dx = \frac{1}{2}[\frac{x^3}{3}]|^5_1=\frac{1}{2}(\frac{125}{3}-\frac{1}{3})=\frac{62}{3}
Example :: Double Integral:

Evaluate the integral
R23xydA,R=[2,4]×[1,3]\iint _R \frac{23x}{y}dA, \quad R=[-2,4] \times [1,3]

  1. Replace with more readable terms
  2. R23xydA=x=(2)41323xydydx\iint_R \frac{23x}{y}dA = \int{x=(-2)}^4 \int^3_1 \frac{23x}{y}dydx
  3. Compute the inner integral
    1323xydy=23xlny13=23x(ln3ln1)\int^3_1 \frac{23x}{y}dy=23x\ln|y||^3_1=23x(\ln|3| - \ln |1|)
  4. Compute the outer integral
    (ln3ln1)x=(2)423x=(ln3ln1)(23x22)24=(\ln|3| - \ln |1|)\int_{x=(-2)}^4 23x=(\ln|3| - \ln |1|)\cdot (\frac{23x^2}{2})|^4_{-2}=…
  5. (ln3ln1)(23(4)2223(2)22)(\ln|3| - \ln |1|) \cdot (\frac{23(4)^2}{2}-\frac{23(-2)^2}{2})

Evaluate the integral
Ry2tan(x)dA,R=[0,π3]×[0,5]\iint_R y^2 \tan (x) dA,R=[0,\frac{\pi}{3}] \times [0,5]

  1. Rewrite integral above
  2. Ry2tan(x)dA=0π/305y2tan(x)dydx\iint_R y^2 \tan (x) dA=\int^{\pi/3}_0 \int^5_0 y^2\tan(x)dydx
  3. Evaluate the inner integral
  4. tan(x)05y2dy=tan(x)(y33)05=tan(x)(5330)=1253tan(x)\tan(x)\int^5_0 y^2dy=\tan(x)(\frac{y^3}{3})|^5_0=\tan(x)(\frac{5^3}{3}-0)=\frac{125}{3}\tan(x)
  5. Evaluate the outer integral
  6. 12530π/3tan(x)=(1253)(lncos(x))0π/3=(1253)(lncos(π/3)lncos(0))\frac{125}{3} \int^{\pi/3}_0 \tan(x)=-(\frac{125}{3})(\ln|\cos(x)|)|^{\pi/3}_0=-(\frac{125}{3})(\ln|\cos(\pi/3)|-\ln|\cos(0)|)
  7. Compute
  8. (1253)(lncos(π/3)lncos(0))=1253ln(2)-(\frac{125}{3})(\ln|\cos(\pi/3)|-\ln|\cos(0)|)=\frac{125}{3}\ln \left(2\right)

15.2 Double Integrals Over More General Regions

Piecewise Smooth

A multidimensional curve that acts as a boundary typically for integrals

Defining Double Integral of a Piecewise Smooth

The function f~\tilde{f} is set equal to the function mapping the domain

Df(x,y)dA=Rf~(x,y)dA\iint_D f(x,y)dA = \iint_R \tilde{f}(x,y)dA

f~(x,y)=f(x,y) if (x,y)D&0 if (x,y)∉D\tilde{f}(x,y)= {f(x,y) \text{ if } (x,y) \in D \quad \& \quad 0 \text{ if } (x,y) \not\in D}

  • function ff is integral over DD if the integral of f~\tilde{f} over RR exists (as all shown in the image above)
Theorem 1

If f(x,y)f(x,y) is continuous on a closed domain DD whose boundary is a simple closed piecewise smooth curve, then Df(x,y)dA\iint_D f(x,y)dA exists

Computing Regions Between Two Graphs

When DD is a region between two graphs in the xy-plane, we can evaluate double integrals over DD as interated integrals. Since DD is vertically simple if it is the region between the graph of two continuous functions y=g1(x)y=g_1(x) and y=g2(x)y=g_2(x) over a fixed interval.

D={(x,y):axb,g1(x)yg2(x)}D=\{(x,y):a \le x \le b, \quad g_1(x) \le y \le g_2 (x)\}

If DD is horizontally simple

D={(x,y):cyd,h1(y)xh2(y)}D=\{(x,y):c \le y \le d, \quad h_1(y) \le x \le h_2 (y)\}

Theorem 2

If DD is vertically simple with description

D={(x,y):axb,g1(x)yg2(x)}D=\{(x,y):a \le x \le b, \quad g_1(x) \le y \le g_2 (x)\}

then,

Df(x,y)dA=abg1(x)g2(x)f(x,y)dydx\iint_D f(x,y)dA=\int^b_a \int^{g_2(x)}_{g_1(x)} f(x,y)dydx

If DD is horizontally simple with description

D={(x,y):cyd,h1(y)xh2(y)}D=\{(x,y):c \le y \le d, \quad h_1(y) \le x \le h_2 (y)\}

then,

Df(x,y)dA=cdh1(x)h2(x)f(x,y)dxdy\iint_D f(x,y) dA=\int^d_c \int^{h_2(x)}_{h_1(x)} f(x,y)dxdy

Note:
Since f~(x,y) \tilde{f}(x,y) is zero outside DD, so for fixed x, f~(x,y)\tilde{f}(x,y) is zero unless y satisfies g1(x)yg2(x)g_1(x) \le y \le g_2(x) giving us


cdf~(x,y)dy=g1(x)g2(x)f(x,y)dydx\int^d_c \tilde{f}(x,y)dy = \int^{g_2(x)}_{g_1(x)} f(x,y)dydx


Integration over a horizontally or vertically simple region is similar to integration over a rectangle with one difference: The limits of the inner integral may be functions instead of constants.

Example :: Compute double integral over domain D

Compute the double integral of f(x,y)=x2yf(x,y)=x^2y over the given shaded domain in the figure. Assume that a=1a=1.

  1. Describe DD as a vertically simple region.

    0x(2a=2),f(x)=?ya0 \le x \le (2a=2), \quad f(x)=? \le y \le a
  2. We need to find the function f(x)f(x) along the piecewise smooth. Knowing that we go right (2) a’s for every down (1) a we can create a function mapping to
    f(x)=yx=a12x=112xf(x)=\frac{y}{x}=a - \frac{1}{2}x=1- \frac{1}{2}x
    Now we can plug into our equation with value a=1a=1
    0x2,112xy10 \le x \le 2, \quad 1- \frac{1}{2}x \le y \le 1

This segment is horizontally simple since the x value doesn’t change in this piecewise smooth but the y-compontent does

  1. Set up the iterated integral
  2. Dx2ydA=02y=(112x)1x2y dydx\iint_D x^2ydA = \int^2_0 \int^1_{y=(1 - \frac{1}{2}x)}x^2y \space dydx
  3. Solve for y on the inner integral
  4. y=(112x)1x2y dy=02=12x2y2 y=(112x)1=02x2(12(2x)28)dx\int^1_{y=(1- \frac{1}{2}x)}x^2y \space dy=\int^2_0= \frac{1}{2}x^2y^2 \space \vert^1_{y=(1- \frac{1}{2}x)}= \int^2_0 x^2\left(\frac{1}{2}-\frac{\left(2-x\right)^2}{8}\right)dx
  5. Solve for x on the outer integral with the new input value
  6. 02x2(12(2x)28)dx=02x22x2(2x)28=245=1.2\int^2_0 x^2\left(\frac{1}{2}-\frac{\left(2-x\right)^2}{8}\right)dx= \int^2_0 \frac{x^2}{2} - \frac{x^2(2-x)^2}{8} = 2 - \frac{4}{5}=1.2
    ANS: 1.21.2

Compute the double integral of Dx3y dA\iint_D x^3y \space dA over the domain DD over 0x3,xy5x+30 \le x \le 3, \quad x \le y \le 5x + 3
Rewrite:
03x5x+3x3y dydx\int^3_0 \int^{5x+3}_x x^3 y \space dydx

  1. Calculate the inner integral
    x5x+3x3y dy=12x3y2x5x+3=x3(9+30x+24x2)2\int^{5x+3}_x x^3 y \space dy=\frac{1}{2}x^3y^2 \vert_x^{5x+3}=\frac{x^3(9+30x+24x^2)}{2}
  2. Plug in the new value of the inner integral into the outer integral
    03x3(9+30x+24x2)2dx=182258\int^3_0\frac{x^3\left(9+30x+24x^2\right)}{2}dx=\frac{18225}{8}
  3. ANS: \dfrac{18225}{8} /)

Compute the double integral \(\iint_D (70xy-x^2) \space dA over the region bounded below by y=x2y=x^2, above by y=xy=\sqrt{x}.

  1. Find the bounds of the outer integral
    x2=x,x=0,1x^2 = \sqrt{x}, \quad x = 0,1
  2. Rewrite the integral
  3. 01x2x(70xyx2) dydx\int^1_0 \int_{x^2}^{\sqrt{x}}(70xy-x^2) \space dydx
  4. Compute the inner integral
  5. x2x(70xyx2) dy=35xy2x2x2x=x2x+x435x5+35x2\int_{x^2}^{\sqrt{x}}(70xy-x^2) \space dy=35xy^2-x^2 \vert_{x^2}^{\sqrt{x}}=-x^2\sqrt{x}+x^4-35x^5+35x^2
  6. Compute the outer integral
  7. 01(x2x+x435x5+35x2) dx=1207210\int^1_0(-x^2\sqrt{x}+x^4-35x^5+35x^2) \space dx=\frac{1207}{210}
    ANS: 1207210\frac{1207}{210}
Theorem 3

Let f(x,y)f(x,y) and g(x,y)g(x,y) be integrable functions on DD

  1. If f(x,y)g(x,y)f(x,y) \le g(x,y) for all (x,y)D(x,y) \in D then,
    • Df(x,y)dADg(x,y)dA\iint_D f(x,y)dA \le \iint_D g(x,y)dA
  2. If mf(x,y)Mm \le f(x,y) \le M for all (x,y)D(x,y) \in D then
    • marea(D)Df(x,y)dAMarea(D)m \cdot area(D) \le \iint_D f(x,y)dA \le M \cdot area(D)

Average Value

The average (mean) value of a function on domain DD is denoted as f\overline{f}

f=1area(D)Df(x,y)dA=Df(x,y)dAD1dA\overline{f}=\frac{1}{area(D)} \iint_D f(x,y)dA=\frac{\iint_D f(x,y)dA}{\iint_D 1dA}

The value of f\overline{f} satisfies this relationship

Df(x,y)dA=farea(D)\iint_D f(x,y)dA=\overline{f} \cdot area(D)

Theorem 4: Mean Value Theorem for Double Integrals

If f(x,y)f(x,y) is continuous and DD is closed, bounded, and connected, then there exists a point PDP \in D such that

Df(x,y)dA=f(P)area(D)\iint_D f(x,y)dA=f(P)area(D)

Equivalently, f(P)=ff(P)=\overline{f} where f\overline{f} is the average value of ff on DD.

Note:
The mean value theorem for double integrals only applies to continuous functions, therefore meaning they lie on the same domain

Example :: Find volume from 3 points in 3D space:

Calculate the double integral of f(x,y)=58xf(x,y)=5-8x over the triangle with vertices O=(0,0),A=(2,7),B=(6,7)O=(0,0),A=(2,7),B=(6,7)
D(58x)dA\iint_D(5-8x)dA
0727y67y(58x)dxdy=6863\int^7_0 \int_{\frac{2}{7}y}^{\frac{6}{7}y}(5-8x)dxdy=-\frac{686}{3}

066x/27x/2(58x)dxdy\int^6_0 \int^{7x/2}_{6x/2}(5-8x)dxdy

Find the volume of the region bounded by

z=72y,z=y,y=x2,y=36x2z=72-y,\quad z=y,\quad y=x^2, \quad y=36-x^2
z=72(z),z=36,x2=36x2,x=18,y=18z=72-(z),\quad z=36, \quad x^2=36-x^2, \quad x=\sqrt{18}, \quad y=18

Example :: Estimating area of the subdomain:

Using the table below find the average area of the list of sub-domains

Estimate Df(x,y)dA\iint_D f(x,y) dA

Df(x,y)dA=f(P)area(D)1+f(P)area(D)2+\iint_D f(x,y)dA=f(P)area(D)_1 + f(P)area(D)_2 + …

=1.48.6+0.78.6+0.98.5+0.99.1+1.18.5+1.19.1=53.26=1.4 * 8.6 + 0.7 * 8.6 + 0.9 * 8.5 + 0.9 * 9.1 + 1.1 * 8.5 + 1.1 * 9.1= 53.26

15.3 Triple Integrals

Similar to double integrals except there is another degree of restriction
B=[a,b]×[c,d]×[p,q]B=[a,b] \times [c,d] \times [p,q]
such that all points in R3\mathbb{R}^3
axb,cyd,pzqa \le x \le b, \quad c \le y \le d, \quad p \le z \le q

To integrate over this box we subdivide the box into subboxes
Bijk=[xi1,xi]×[yj1,yj]×[zk1,zk]B_{ijk}=[x_{i-1},x_i] \times [y_{j-1},y_j] \times [z_{k-1}, z_k]
by choosing partitions of the three intervals
a=x0<x1<<xN=ba= x_0 < x_1 < … < x_N = b
c=y0<y1<<yM=dc = y_0 < y_1 < … < y_M = d
p=z0<z1<<zL=qp = z_0 < z_1 < … < z_L = q

Here, N, M, and L are positive integers. The volume of BijkB_{ijk} is ΔVijk=Δxi,Δyj,Δzk\Delta V_{ijk}=\Delta x_i, \Delta y_j, \Delta z_k where
Δxi=xixi1,Δyj=yjyj1,Δzk=zkzk1\Delta x_i = x_i - x_{i-1}, \quad \Delta y_j = y_j - y_{j-1}, \quad \Delta z_k = z_k - z_{k-1}
Then we choose a sample point PijkP_{ijk} in each sub box BijkB_{ijk} and form the Riemann sum…
SN,M,L=i=1Nj=1Mk=1Lf(Pijk)ΔVijkS_{N,M,L}=\sum^N_{i=1}\sum^M_{j=1}\sum^L_{k=1} f(P_{ijk}) \Delta V_{ijk}
We write P=xi,yj,zkP={{x_i},{y_j},{z_k}} for the partition and let P||P|| be the maximum of the widths Δxi,Δyj,Δzk\Delta x_i, \Delta y_j, \Delta z_k. If the sums SN,M,LS_{N,M,L} approach a limit as P0||P|| \rightarrow 0 for arbitrary choices of sample points, we say that ff is integrable over BB. The limit value is denoted
Bf(x,y,z)dV=limP0SN,M,L\iiint_B f(x,y,z)dV = \lim_{||P|| \rightarrow 0} S_{N,M,L}

Theorem 1: Fubini’s Theorem for Triple Integrals

The triple integral of a continuous function f(x,y,z)f(x,y,z) over a box B=[a,b]×[c,d]×[p,q]B= [a,b] \times [c,d] \times [p, q] is equal to the iterated integral
Bf(x,y,z)dV=x=aby=cdz=pqf(x,y,z)dz dy dx\iiint_B f(x,y,z)dV= \int^b_{x=a}\int^d_{y=c}\int^q_{z=p}f(x,y,z)dz \space dy \space dx
Furthermore, the iterated integral can be evaluated in any order

Example :: Triple Integral:

Evaluate
B(xz+yz2)dV for box: 0x4,2y4,0z4\iiint_B (xz + yz^2) dV \text{ for box: } 0 \le x \le 4, \quad 2 \le y \le 4, \quad 0 \le z \le 4

  1. Rewrite:
    042404(xz+yz2)dzdydx\int^4_0 \int^4_2 \int^4_0 (xz + yz^2)dzdydx
  2. Evaluate the inner integral
    04(xz+yz2)dz=12xz2+13yz304=12x(4)2+13y(4)3(0)=8x+643y\int^4_0(xz + yz^2)dz=\frac{1}{2}xz^2 + \frac{1}{3}yz^3 \vert^4_0=\frac{1}{2}x(4)^2 + \frac{1}{3}y(4)^3-(0)= 8x + \frac{64}{3}y
  3. Evaluate the middle integral
    24(8x+643y)dy=8x+323y224=8x(4)+323(4)2(8x(2)323(2)2)=16x+128\int^4_2(8x + \frac{64}{3}y)dy = 8x + \frac{32}{3}y^2 \vert^4_2 = 8x(4) + \frac{32}{3}(4)^2 - \left( 8x(2) \frac{32}{3}(2)^2 \right) = 16x + 128
  4. Evaluate the outer integral
    04(16x+128)dx=8x2+128x04=640\int^4_0 (16x + 128)dx = 8x^2 + 128x \vert^4_0 = 640
Theorem 2

The triple integral of a continuous function ff over the region
W:(x,y)D,z1(x,y)zz2 (x,y) W \quad : \quad (x,y) \in D, \quad z_1(x,y) \le z \le z_2 \space (x,y)
is equal to the iterated integral
Wf(x,y,z) dV=D(z=z1(x,y)z2(x,y)f(x,y,z)dz)dA\iiint_W f(x,y,z) \space dV = \iint_D \left( \int^{z_2(x,y)}_{z=z_1(x,y)} f(x,y,z)dz\right)dA
Note:
More generally, integrals of functions of nn variables (for any nn ) arise naturally in many different contexts. For example, the average distance between two points in a ball in R3R^3 is expressed as a six-fold integral because we integrate over all possible coordinates of the two points. Each point has three coordinates for a total of six variables.

The volume of a region WW is defined as
V=W1dVV=\iiint_W 1dV

Example :: Integrating inner integral with equations:

Integrate f(x,y,z)=xf(x,y,z)=x over the region WW in the first octant above z=y2z=y^2 and below z=805x24y2z=80-5x^2 -4y^2
Rewrite:
Dz=y2805x24y2x\iint_D \int^{80-5x^2-4y^2}_{z=y^2}x

  1. Now we find the ranges for the next two integrals. Knowing that the first quadrant starts at x=0x=0 and y=0y=0 we can assume those are the bottom constraints. For the top constants we can set the two equations equal to one another
    805x24y2=y2,16x2=y2,x2+y2=16,x=4,y=16x280-5x^2-4y^2 = y^2, \quad 16 - x^2 = y^2, \quad x^2 + y^2 = 16, \quad x = 4, y = \sqrt{16-x^2}
  2. Now we rewrite the integral
    04016x2z=y2805x24y2x\int_0^4 \int_0^{\sqrt{16-x^2}} \int^{80-5x^2-4y^2}_{z=y^2}x
  3. Calculate:
  4. 04016x2z=y2805x24y2x=20483\int_0^4 \int_0^{\sqrt{16-x^2}} \int^{80-5x^2-4y^2}_{z=y^2}x = \frac{2048}{3}

Find the volume of the solid V in the first octant bounded by x+y+z=2x + y + z = 2 and x+y+3z=2x + y + 3z = 2 NOTICE: REGION IS Z-SIMPLE

  1. Set the equations to each other to find the bounds
    z:z=2xy,2xy32xy3z2xyz:\quad z=2-x-y, \frac{2-x-y}{3} \quad \frac{2-x-y}{3}\le z \le 2-x-y
  2. Knowing that the integral is z-simple we can solve that as the first integral of our problem
  3. V=WdV=Dz=2xy32xydz dAV = \iiint_W dV=\iint_D \int^{2-x-y}_{z=\frac{2-x-y}{3}}dz \space dA
  4. Solve for the y-variable in this equation by setting the equations equal to one another
    2xy=2xy3,y=2x2 - x - y = \frac{2-x-y}{3}, \quad y=2-x
  5. Plug in the new constraints
  6. ab2x<em>02xy</em>z=2xy3dz dy dx\int^b_a \int^{2-x}<em>0 \int^{2-x-y}</em>{z=\frac{2-x-y}{3}}dz \space dy \space dx
  7. Find the final constraints for x
  8. 0xb,0y2x,2xyz2xy30 \le x \le b, \quad 0 \le y \le 2-x, \quad 2-x-y \le z \le \frac{2-x-y}{3}
  9. setting x=0x=0 in the y-variable constraint, we can confirm that the top constraint is x=2x=2
  10. 0x2,0y2x,2xyz2xy30 \le x \le 2, \quad 0 \le y \le 2-x, \quad 2-x-y \le z \le \frac{2-x-y}{3}
  11. Plug in
  12. 022x0z=2xy32xydz dy dx\int^2_0 \int^{2-x}0 \int^{2-x-y}_{z=\frac{2-x-y}{3}}dz \space dy \space dx
  13. Solve
  14. 022x0z=2xy32xydz dy dx=89\int^2_0 \int^{2-x}0 \int^{2-x-y}_{z=\frac{2-x-y}{3}}dz \space dy \space dx=\frac{8}{9}

Let WW be the region bounded by z=4y2,y=2x2z=4-y^2, y=2x^2 and the plane z=0z=0. Calculate the volume of WW as a triple integral

  1. Find out which dimension the equation is simple for: I think the volume would be z simple since we know z is constrained between z=0z=0 and z=4y2z=4-y^2.
    WdV=D04y2dz dA \iiint_W dV = \iint_D \int_0^{4-y^2} dz \space dA
  2. Then we can solve for y by plugging into the equation with z and y
    (0)=4y2,y=2 (0) = 4-y^2, \quad y = 2
    ab2x2204y2dz dy dx \int^b_a \int_{2x^2}^{2} \int_0^{4-y^2} dz \space dy \space dx
  3. Find constraints for x: We can set y = 2 and say x=1,1x = 1, -1 with the 2nd equation.
    112x2204y2dz dy dx=12821 \int^1_{-1} \int_{2x^2}^{2} \int_0^{4-y^2} dz \space dy \space dx = \frac{128}{21}

15.4 Polar Coordinates

Rectangular Coordinates

The typical coordinate system relying on an absolute origin

Polar Coordinates

Labeling a point PP through coordinate ordering of (r,θ)(r, \theta) where rr is the distance to the origin OO and θ\theta is the angle between OP\overline{OP}. θ\theta moves counterclockwise

Example :: Rectangular to Polar:

Convert Rectangular to Polar Coordinates

  1. (0,-1)
    r=02+(1)2)=1tan1(1)=π4r = \sqrt{0^2 + (-1)^2})=1 \quad \tan^{-1}(1)= \frac{\pi}{4}
  2. (3, 3\sqrt{3})
    r=32+(3)2=12tan1(12)=1.2898r = \sqrt{3^2 + (\sqrt{3})^2}= \sqrt{12} \quad \tan^{-1}(\sqrt{12})=1.2898
  3. (1,3)(-1, \sqrt{3})
    r=(1)2+(3)2=10tan1(10)=1.26451r=\sqrt{(-1)^2+(\sqrt{3})^2}=\sqrt{10} \quad \tan^{-1}(\sqrt{10}) = 1.26451
Example :: Integrating a circle:

Assume that a=1a=1. Integrate f(x,y)=y(x2+y2)3f(x,y)=y(x^2 + y^2)^3 over DD using polar coordinates.
Dy(x2+y2)3dA\iint_D y(x^2 + y^2)^3 dA
y=asinθ,x=acosθy=a \sin \theta, \quad x = a \cos \theta

D(asinθ)((acosθ)2+(asinθ)2)dA=θ=0π0a(asinθ)(a2)3dA\iint_D (a \sin \theta )((a \cos \theta )^2 + (a \sin \theta )^2) dA= \int^\pi_{\theta = 0} \int^a_0 (a \sin \theta )(a^2)^3 dA θ=0π01(sinθ)(a8)da dθ=29\int^\pi_{\theta = 0} \int^1_0 ( \sin \theta )(a^8) da \space d\theta = \frac{2}{9}

Evaluate by changing to polar coordinates

0π/209r2cos2θ+r2sin2θ da dθ\int^{\pi/2}_0 \int^{9}_0 \sqrt{r^2\cos^2\theta + r^2\sin^2\theta} \space da \space d \theta

0π/2026r3cosθsinθdrdθ\int^{\pi/2}_0 \int^2_0 6 \cdot r^3\cos\theta \cdot \sin\theta drd\theta

0π/20sin2θr3cosθ17drdθ\int_0^{\pi/2} \int^{\sqrt{\sin2 \theta}}_0 r^3 \cos \theta \sqrt{17}drd\theta

15.4.2 Cylindrical and Spherical Coordinates

Cylindrical to RectangularRectangular to Cylindrical
x=rcosθx=r\cos\thetar=x2+y2r=\sqrt{x^2+y^2}
y=rsinθy=r\sin\thetatanθ=yx\tan\theta = \frac{y}{x}
z=zz=zz=zz=z
Example :: Converting Cylindrical to Rectangular Coordinates:

Find the rectangular coordinates of the point PP with the cylindrical coordinates (r,θ,z)=(2,3π4,5)(r,\theta,z)=(2, \frac{3\pi}{4}, 5)

  1. x=rcosθ=2cos3π4=2(22)=2x=r\cos\theta = 2\cos \frac{3\pi}{4}=2 \left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}
    y=rsinθ=2sin3π4=2(22)=2y=r\sin\theta = 2\sin \frac{3\pi}{4}=2 \left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}
  2. z=z=5,ANS: (2,2,5)z=z=5, \text{ANS: } (-\sqrt{2}, \sqrt{2}, 5)
  3. Convert from cylindrical to rectangular coordinates (6,π3,8)(6, \frac{\pi}{3}, -8)
  4. x=rcosθ=6cosπ3=6(12)=3x = r\cos \theta = 6 \cos \frac{\pi}{3} = 6(\frac{1}{2})=3
  5. x=rsinθ=6sinπ3=6(32)=33x = r\sin \theta = 6 \sin \frac{\pi}{3} = 6(\frac{\sqrt{3}}{2})=3\sqrt{3}
  6. Convert from rectangular to cylindrical coordinates (12,43,10)(12, 4\sqrt{3}, 10)
  7. r=x2+y2=122+(43)2=83r = \sqrt{x^2+y^2} = \sqrt{12^2+(4\sqrt{3})^2} = 8\sqrt{3}
  8. θ=tan1yx=tan14312=tan133=π6\theta = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{4\sqrt{3}}{12}=\tan^{-1} \frac{\sqrt{3}}{3}=\frac{\pi}{6}
Example :: Use cylindrical coordinates to integrate:

Use cylindrical coordinates to calculate the triple integral Wf(x,y,z)dV\iiint_W f(x,y,z)dV for the function f(x,y,z)=12116zx2+y2f(x,y,z)=\frac{1}{2116}z\sqrt{x^2+y^2} and the region x2+y2z46(x2+y2)x^2 + y^2 \le z \le 46 - (x^2 + y^2)

  1. Transform rectangular into cylindrical coordinates
    f(x,y,z)=12116zx2+y2=12116z(r)f(x,y,z)=\frac{1}{2116}z\sqrt{x^2+y^2}=\frac{1}{2116}z(r)
    x2+y2z46(x2+y2)=(r2)z46(r2)x^2 + y^2 \le z \le 46 - (x^2 + y^2) = (r^2)\le z \le 46 - (r^2)
  2. Solve for the values to integrate
    r2=46r2,2r2=46,r=46/2=23r^2 = 46 - r^2, \quad 2r^2 = 46, \quad r = \sqrt{46/2}=\sqrt{23}
  3. Plug into the new coordinates
  4. 02π023r246r212116zrr dzdrdθ=46π2315\int_0^{2\pi} \int_0^{\sqrt{23}} \int_{r^2}^{46-r^2} \frac{1}{2116}zr \cdot r \space dzdrd\theta = \frac{46 \pi \sqrt{23}}{15}
  5. Find the volume VV of the region appearing between the two surfaces z=x2+y2z=x^2 + y^2 and z=128x2y2z=128 - x^2 - y^2
  6. Transform items into spherical terms
    z=x2+y2=r2z=128(x2+y2)=128r2z=x^2 + y^2 = r^2 \quad z = 128 - (x^2 + y^2) = 128- r^2
  7. Solve for radius
  8. r2=128r2,2r2=128,r=8r^2 = 128 - r^2, \quad 2r^2 = 128, \quad r = 8
  9. Set up integral:
  10. 2π<em>008</em>r2128r2rdzdrdθ=4096π\int^{2\pi}<em>0 \int^8_0 \int</em>{r^2}^{128-r^2} r \cdot dzdrd\theta = 4096\pi

Spherical Coordinates

Spherical coordinates make use of the fact that a point PP on a sphere of radius ρ\rho is determined by two angular coordinates θ\theta and ϕ\phi

SymbolMeaning
θ\thetaPolar angle onto xy-plane
ϕ\phiangle of declination
ρ\rhodistance from origin
Spherical to rectangularRectangular to spherical
x=ρsinϕcosθx = \rho \sin \phi \cos \thetaϕ=x2+y2+z2\phi = \sqrt{x^2 + y^2 + z^2}
y=ρsinϕsinθy= \rho \sin \phi \sin \thetatanθ=yx\tan \theta = \frac{y}{x}
z=ρcosϕz= \rho \cos \phicosϕ=zρ\cos \phi = \frac{z}{\rho}
Example :: Integrating using cylindrical coordinates:

Use cylindrical coordinates to calculate Wf(x,y,z)dV\iiint_W f(x,y,z)dV for f(x,y,z)=xf(x,y,z)=x while x2+y29x^2 + y^2 \le 9 and x0x \ge 0 and y0y \ge 0 and 4z4-4 \le z \le 4

  1. Solve for ρ\rho
  2. x2+y2=9,ρ2=9,ρ=3x^2 + y^2 = 9,\quad \rho^2 = 9, \quad \rho = 3
  3. θ2<em>θ1r2(θ)</em>r1(θ)z2(r,θ)<em>z1(r,θ)x dzdrdθ=θ2</em>θ1r2(θ)<em>r1(θ)z2(r,θ)</em>z1(r,θ)rcosθr dzdrdθ\int^{\theta_2}<em>{\theta_1} \int^{r_2(\theta)}</em>{r_1(\theta)} \int^{z_2(r,\theta)}<em>{z_1(r, \theta)} x \space dzdrd \theta = \int^{\theta_2}</em>{\theta_1} \int^{r_2(\theta)}<em>{r_1(\theta)} \int^{z_2(r,\theta)}</em>{z_1(r, \theta)} r\cos \theta \cdot r \space dzdrd \theta
  4. 2π<em>03</em>044rcosθr dzdrdθ\int^{2\pi}<em>{0} \int^{3}</em>{0} \int^{4}_{-4} r\cos \theta \cdot r \space dzdrd \theta

15.5 Applications of Multiple Integrals

FunctionIn R2R^2In R3R^3
Total MassM=Dδ(x,y)dAM = \iint_D \delta (x,y)dAM=Wδ(x,y,z)dVM=\iiint_W \delta (x,y,z)dV
Moments XMx=Dyδ(x,y)dAM_x = \iint_D y\delta (x,y)dAMyz=Wxδ(x,y,z)dAM_{yz} = \iint_W x\delta (x,y,z)dA
Moments YMy=Dxδ(x,y)dAM_y = \iint_D x\delta (x,y)dAMxz=Wyδ(x,y,z)dAM_{xz} = \iint_W y\delta (x,y,z)dA
Moments ZNAMxy=Wzδ(x,y,z)dAM_{xy} = \iint_W z\delta (x,y,z)dA
Moments of Intertia XIx=Dy2δ(x,y)dAI_x = \iint_D y^2 \delta (x,y)dAIx=W(y2+z2)δ(x,y,z)dVI_x = \iiint_W (y^2 + z^2) \delta (x,y,z)dV
Moments of Intertia YIy=Dx2δ(x,y)dAI_y = \iint_D x^2 \delta (x,y)dAIx=W(x2+z2)δ(x,y,z)dVI_x = \iiint_W (x^2 + z^2) \delta (x,y,z)dV
Moments of Intertia ZI_0 = \iint_D (x^2 + y^2) \delta (x,y)dA,\(I_x = \iiint_W (x^2 + y^2) \delta (x,y,z)dV
Center of Massxcm=MyM,ycm=MxMMyM,MxMx_{cm} = \frac{M_y}{M}, \quad y_{cm} = \frac{M_x}{M} \quad \langle \frac{M_y}{M}, \frac{M_x}{M}\ranglexcm=MyzM,ycm=MxzM,zcm=MxyMx_{cm} = \frac{M_{yz}}{M}, \quad y_{cm} = \frac{M_{xz}}{M}, \quad z_{cm} = \frac{M_{xy}}{M}

Radius of gyration: rg=(IM)1/2\text{Radius of gyration: }r_g = \left(\frac{I}{M}\right)^{1/2}
Random variables XX and YY have joint probabliity density function p(x,y)p(x,y) if…
P(aXb;cYd)=x=aby=cdp(x,y)dydxP(a \le X \le b; c \le Y \le d) = \int^b_{x=a} \int^d_{y=c} p(x,y) dydx
A joint probability density function must satisfy p(x,y)0p(x,y) \ge 0 and
<em>x=</em>y=p(x,y)dydx=1\int^{\infty}<em>{x=-\infty}\int^{\infty}</em>{y=-\infty} p(x,y)dydx = 1

Examples :: Density:

Find the total mass of the rectangle 0x4,1y70 \le x \le 4, 1 \le y \le 7 assuming a mass density of δ(x,y)=4x2+y2\delta (x,y) = 4x^2 + y^2

  1. Use the formula for average f\overline{f}
    • f=Df(x,y)dAD1dA\overline{f}=\frac{\iint_D f(x,y)dA}{\iint_D 1dA}
  2. Find the bounds
    • 12<em>x=6x6</em>x61dxdy=86\int^{12}<em>{x=6} \int^{\sqrt{x-6}}</em>{-\sqrt{x-6}} 1dxdy = 8\sqrt{6}

Calculate the integral of f(x,y,z)=z(x2+y2+z2)3/2f(x,y,z) = z(x^2 + y^2 + z^2)^{-3/2} over the part of the ball x2+y2+z249x^2 + y^2 + z^2 \le 49 defined by z72z \ge \frac{7}{2}
Wf(x,y,z)dV=?\iiint_W f(x,y,z)dV = ?

  1. Set up integral
    • 07z(x2+y2+z2)3/2\int^7_0 \int \int z(x^2 + y^2 + z^2)^{-3/2}
    • 02π0π/405p2sinxdpdxdθ\int_0^{2\pi} \int^{\pi/4}_0 \int^5_0 p^2 \sin x dpdxd\theta
  2. Use spherical coordinates to calculate the triple integral of
    • f(x,y,z)=1x2+y2+z2f(x,y,z) = \frac{1}{x^2 + y^2 + z^2}
    • over the region 5x2+y2+z2255 \le x^2 + y^2 + z^2 \le 25
    • 02π0π55sinϕdρdϕdθ\int_0^{2\pi} \int_0^{\pi} \int_{\sqrt{5}}^5 \sin \phi d\rho d \phi d\theta
  3. Use the total mass formula of M=Dδ(x,y)dAM = \iint_D \delta (x,y)dA
    • M=Dδ(x,y)dA=04174x2+y2dydxM = \iint_D \delta (x,y)dA = \int^4_0 \int_1^7 4x^2 + y^2 dydx
  4. Calculate the inner integral
    • 174x2+y2dy=4x2y+y3317=28x2+(7)334x2(1)(1)33=24x2+3423\int^7_1 4x^2 + y^2 dy = 4x^2y + \frac{y^3}{3} |^7_1 = 28x^2 + \frac{(7)^3}{3} - 4x^2(1) - \frac{(1)^3}{3} = 24x^2 + \frac{342}{3}
  5. Calculate the outer integral
    • 04(24x2+114)dx=8x3+114x04=8(4)3+114(4)=968\int^4_0 (24x^2 + 114) dx = 8x^3 + 114x |^4_0 = 8(4)^3 + 114(4) = 968
  1. Find the total population within a 3-km radius of the city center assuming a population density of δ(x,y)=2000(x2+y2)0.3\delta (x,y) = 2000(x^2 + y^2 )^{-0.3}
  2. City is a circle so the outer integral would be 02π\int^{2\pi}_0
  3. r=3;03r=3; \int^3_0
  4. translate x and y into cylindrical
  5. 02π032000r(r2)0.3drdθ=41788\int^{2\pi}_0 \int^3_0 2000r(r^2)^{-0.3}drd\theta = 41788
  6. The total mass of the solid region WW defined by x0,y0,x2+y24,xz25xx \ge 0, y \ge 0, x^2 + y^2 \le 4, x \le z \le 25-x assuming a mass density of δ(x,y,z)=6y\delta (x,y,z) = 6y
  7. Set up integrals in form of polar coordinates0r4=2,0θ2π,x=rcosθ,rcosθz25rcosθ0 \le r \le \sqrt{4}=2,\quad 0 \le \theta \le 2\pi, \quad x = r\cos\theta, \quad r\cos\theta \le z \le 25 - r\cos\theta
  8. Set up integrals
  9. π/2<em>00225rcosθ</em>rcosθ6rsinθrdzdrdθ\int^{\pi/2}<em>0 \int^2_0 \int^{25-r\cos\theta}</em>{r\cos\theta}6r \sin \theta \cdot r dzdrd\theta
  10. Find the center of mass of the region bounded by the semicircle x2+y2R2,y0x^2 + y^2 \le R^2 , y \ge 0 with mass density δ(x,y)=y\delta(x,y) = y
  11. Use the center of mass equation, or the centroidxcm=MyM,ycm=MxMx_{cm} = \frac{M_y}{M}, \quad y_{cm} = \frac{M_x}{M}
  12. Solve for MMM=Dδ(x,y)dA=0π0Rrsinθrdrdθ=2R33M = \iint_D \delta (x,y)dA = \int_0^{\pi} \int^R_0 r\sin\theta \cdot r\cdot drd\theta = \frac{2R^3}{3}
  13. Solve for MxM_x and MyM_y
    My=0π0Ryxdrdθ=0π0Rrsinθrcosθrdrdθ=0M_y = \int^{\pi}_0 \int^R_0 yx drd\theta = \int^{\pi}_0 \int^R_0 r\sin \theta \cdot r \cos \theta \cdot r \cdot drd\theta = 0
    Mx=0π0Ry2drdθ=0π0Rr3sin2θdrdθ=πR48M_x = \int^{\pi}_0 \int^R_0 y^2 drd\theta = \int^{\pi}_0 \int^R_0 r^3 \sin^2 \theta drd\theta = \frac{\pi R^4}{8}
  14. Plug in for values of center of mass equation
    ycm=MyM=πR482R33=3πR16y_{cm} = \frac{M_y}{M} = \frac{\frac{\pi R^4}{8}}{\frac{2R^3}{3}} = \frac{3\pi R}{16}
    xcm=MxM=02R33=0x_{cm} = \frac{M_x}{M} = \frac{0}{\frac{2R^3}{3}} = 0
  15. ANS: (0,3πR16)(0, \frac{3\pi R}{16})

Find the average square distance from the origin to a point in the domain DD in the figure. Assume a=6,b=12a=6, b=12

15.6 Change of Variables

Map (Domain)

The input of the function

Image (Co-Domain)

The output of the function that is mapped into a new space

Range

The set of all elements of a function

Let G(u,v)=(uv1,uv)G(u,v) = (uv^{-1}, uv) for u>0u > 0, v>0v > 0. Determine the images of

  1. The lines u=cu = c and v=cv = c
  2. [1,2]×[1,2][1,2] \times [1,2]
    ANS:
  3. In the map we have
    1. xy=u2,x=uv1xy = u^2, \quad x = uv^{-1}
    2. y=uvy = uv
  4. G maps a point (c,v)(c,v) to a point in the xy-plane with xy=c2xy=c^2. In other words, G maps the verticle line u=cu=c to the hyperbola xy=c2xy=c^2. Similarly, by the second part of the equations above, the horizontal line v=cv=c is mapped to the set of points where y/x=c2y/x = c^2 or y=c2xy=c^2x
  5. The image of [1,2]×[1,2][1,2] \times [1,2] is the curvilinear rectangle bounded by four curves of the image defined by
    1. 1xy4,1yx41 \le xy \le 4, \quad 1 \le \frac{y}{x} \le 4
  6. To find G1G^{-1}, we use u2=xyu^2 = xy to get u=xyu = \sqrt{xy} and v=y/xv = \sqrt{y/x}. Therefore the inverse map, G1(x,y)=(xy,x/y)G^{-1}(x,y) = (\sqrt{xy}, \sqrt{x/y})
Jacobian Determinant

How area changes under a mapping

G(u,v)=(x(u,v),y(u,v))G(u,v) = (x(u,v), y(u,v))
is equivalent to the determinant
Jac(G) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}
Note: This still takes the form of a typical determinant

Theorem 1: Jacobian of a Linear Map

The Jacobian of a linear map…
G(u,v)=(Au+Cv,Bu+Dv)G(u,v) = (Au + Cv, Bu + Dv)
is constant with value
Jac(G) = \begin{bmatrix} A & C \
B & D \end{bmatrix} = AD-BC
Under G, the area of a region DD is multiplied by the factor Jac(G)area(D)|Jac(G)|area(D)

area(G(D))Jac(G)(P)area(D)area(G(D)) \approx |Jac(G)(P)|area(D)
Jac(G)(P)=limD0area(G(D))area(D)|Jac(G)(P)| = \lim_{|D|\rightarrow 0} \frac{area(G(D))}{area(D)}
Where DD is the maximum distance between two points

Compute the Jacobian G(u,v)=(3uev,6+8eu)G(u,v) = (3ue^v, 6 + 8e^u)

  1. Find the partial integrals for the Jac(G)Jac(G) equation
    xu=3evyv=0xv=3uevyu=8eu\frac{\partial x}{\partial u} = 3e^v \quad \frac{\partial y}{\partial v} = 0 \quad \frac{\partial x}{\partial v} = 3ue^{v} \quad \frac{\partial y}{\partial u} = 8e^{u}
  2. Plug values into Jac(G)Jac(G) equation
  3. Jac(G) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \begin{bmatrix} 3e^v & 3ue^v \
    8e^u & 0\end{bmatrix} = (3e^v)(0)-(3ue^v)(8e^u) = -24e^{u+v}u
Theorem 2: Change of Variable Formula

Let G:D0DG:D_0 \rightarrow D be a mapping that is one-to-one on the interior of D0D_0. if f(x,y)f(x,y) is continuous then

Df(x,y)dxdy=D0f(x(u,v),y(u,v))(x,y)(u,v)du dv\iint_D f(x,y)dxdy = \iint_{D_0} f(x(u,v), y(u,v)) \Bigg | \frac{\partial(x,y)}{\partial(u,v)}\Bigg | du \space dv

dx dy=Jac(G)=(x,y)(u,v)du dvdx \space dy = \Big | Jac(G) \Big | = \Bigg | \frac{\partial(x,y)}{\partial(u,v)}\Bigg | du \space dv

Let DD be the parallelogram in the xy-plane spanned by the vectors (3,8)(3,8) and (9,12)(9,12). Apply the change of varibalse formula to the map G(u,v)=(9u+3v,12u+8v)G(u,v) = (9u + 3v, 12u + 8v) to evaluate DxydA\iint_D xydA as an integral over D0=[0,1]×[0,1]D_0 = [0,1] \times [0,1]

  1. Define a map
    1. We can convert our double integral to an integral over the unit square R=[0,1]×[0,1]R = [0,1] \times [0,1] if we can find a map that sends RR to PP. The following linear map does this G(u,v)=(9u+3v,12u+8v)G(u,v) = (9u + 3v, 12u + 8v)
    2. Linear Map Formula: G(u,v)=(Au+Cv,Bu+Dv)G(u,v) = (Au + Cv, Bu + Dv)
      G(1,0)=(A,B)=(9,12),G(0,1)=(C,D)=(3,8)G(1,0) = (A, B) = (9,12) , \quad G(0,1) = (C, D) = (3, 8)
  2. Compute the Jacobian
    Jac(G) = \begin{bmatrix} A & C \
    B & D \end{bmatrix} = \begin{bmatrix} 9 & 3 \
    12 & 8 \end{bmatrix} = AD - BC = (9)(8) - (12)(3) = 36
  3. Express f(x,y)f(x,y) in terms of the new variables
    1. Since x=9u+3vx = 9u + 3v and y=12u+8vy = 12u + 8v we have

DxydA=D(9u+3v)(12u+8v)dudv=D108u2+108uv+24v2dxdy\iint_D xydA = \iint_D (9u + 3v)(12u + 8v)dudv = \iint_D 108u^2 + 108uv + 24v^2 dxdy

  1. Replace dxdy=36dudvdxdy = 36 dudv achieved through JacobianD108u2+108uv+24v2dxdy=D108u2+108uv+24v2(36dudv)\iint_D 108u^2 + 108uv + 24v^2 dxdy = \iint_D 108u^2 + 108uv + 24v^2 (36dudv)
  2. Compute integral
  3. 360101108u2+108uv+24v2dudv=255636\int_0^1 \int^1_0108u^2 + 108uv + 24v^2dudv = 2556

Calculate De64x2+9y2dxdy\iint_D e^{64x^2 + 9y^2}dxdy where DD is the interior of the elipse (x3)2+(y8)21(\frac{x}{3})^2 + (\frac{y}{8})^2 \le 1

  1. Convert from polar coordinates
    u=x3;x=3u,v=y8;y=8v,=3u,8vu = \frac{x}{3}; \quad x = 3u, \quad v = \frac{y}{8}; \quad y = 8v, \quad = \langle 3u, 8v \rangle
  2. Solve for G(1,0)G(1,0) and G(0,1)G(0,1) to find values for cross multiplication
    u2+v21;G(1,0)=(3,0),G(0,1)=(0,8)u^2 + v^2 \le 1; \quad G(1,0) = (3, 0), \quad G(0,1) = (0,8)
  3. Compute the Jacobian
    Jac(G) = \begin{bmatrix} A & C \
    B & D \end{bmatrix} = \begin{bmatrix} 3 & 0 \
    0 & 8 \end{bmatrix} = AD - BC = (3)(8) - (0)(0) = 24
  4. Replace x and y in the integral
    1. Note: dxdy=24dudv,x=3u,y=8vdxdy = 24dudv, x = 3u, y = 8v
      De64x2+9y2dxdy=24De64(3u)2+9(8v)2dudv\iint_D e^{64x^2 + 9y^2}dxdy = 24\iint_D e^{64(3u)^2 + 9(8v)^2}dudv
  5. Translate to circular coordinates
    1. x=rcosθ,y=rsinθx = r\cos \theta, \quad y = r \sin \theta
      24De64(3u)2+9(8v)2dudv=24De64(3u)2+9(8v)2dudv24\iint_D e^{64(3u)^2 + 9(8v)^2}dudv = 24\iint_D e^{64(3u)^2 + 9(8v)^2}dudv
      24De576u2+576v2dudv=24De576(u2+v2)dudv24\iint_D e^{576u^2+576v^2}dudv = 24\iint_D e^{576(u^2 + v^2)}dudv
      Note: u2+v2=r2u^2 + v^2 = r^2
      24De576(r2cos2θ+r2sin2θ)dudv=24De576(r2)dudv24\iint_D e^{576(r^2 \cos^2 \theta + r^2 \sin^2 \theta)}dudv = 24\iint_D e^{576(r^2)}dudv
  6. U-sub to translate from du dvdu \space dv to dr dθdr \space d\theta
    1. u=576r2u = 576r^2
    2. du=1152rdrdu = 1152rdr
    3. rdr=du1152rdr = \frac{du}{1152}
    4. 24θ1<em>θ201e576r21152rdrdv=2π</em>024dθ01re576r2drdv24\int^{\theta_1}<em>{\theta_2}\int^1_0 \frac{e^{576r^2}}{1152}rdrdv = \int^{2\pi}</em>{0} 24 d\theta \int^1_0 r \cdot e^{576r^2}drdv
    5. Calculate the inner integral
    6. 01re576r2dr=e57611152\int^1_0 r \cdot e^{576r^2}dr = \frac{e^{576}-1}{1152}
    7. Calculate outer integral
  7. 02π24e57611152dθ=π(e5761)24\int^{2\pi}_024 \cdot \frac{e^{576}-1}{1152}d\theta = \frac{\pi \left(e^{576}-1\right)}{24}

  1. Let DD be the image of R=[1,4]×[1,4]R = [1, 4] \times [1, 4] under the map G(u,v)=(u2v,v2u)G(u,v) = \left( \frac{u^2}{v}, \frac{v^2}{u}\right)
  2. Compute Jac(G)Jac(G)
    Jac(G)=[xuxv yuyv]=[2uvu2v2 v2u22vu]=(2uv)(2vu)(u2v2)(v2u2)=41=3Jac(G) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \begin{bmatrix} \frac{2u}{v} & -\frac{u^2}{v^2} \ - \frac{v^2}{u^2} & \frac{2v}{u} \end{bmatrix} = \left( \frac{2u}{v} \right)\left( \frac{2v}{u} \right) - \left( -\frac{u^2}{v^2} \right)\left( -\frac{v^2}{u^2} \right)= 4-1 = 3
  3. Graph the equation

3. Use change of variables formula to compute the area of DD
area(D)=314141dydx=27area(D) = 3\int^4_1 \int^4_1 1 dydx = 27

4. Compute the integral f(x,y)=x+yf(x,y) = x + y
D(x+y)dxdy=31414u2v+v2ududv\iint_D (x + y) dxdy = 3\int^4_1 \int^4_1 \frac{u^2}{v} + \frac{v^2}{u} dudv

5. 31414u3+v3uvdudv=252ln(2)3\int^4_1 \int^4_1 \frac{u^3+v^3}{uv} dudv = 252ln(2)

Calculate D(2x+3y)dxdy\iint_D (2x+3y)dxdy, where DD is the shaded region in the figure
Hint: Use the map G(u,v)=(u2v,v)G(u,v)=(u-2v,v)

D(2x+3y)dxdy\iint_D(2x + 3y)dxdy

  1. Find the bounds of the integral
    1. Looking at the picture we see that domain is
      6x+2y101x+2y36 \le x + 2y \le 10 \quad 1 \le x + 2y \le 3
      6u101v3u=x+2yv=y6 \le u \le 10 \quad 1 \le v\le 3 \quad \Big |\quad u = x + 2y \quad v = y
  2. Find the Jacobian of the function G(u,v)=(u2v,v)G(u,v)=(u-2v,v)
  3. Jac(G)=[xuxv yuyv]=[12 01]=(1)(1)(2)(0)=1Jac(G) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \begin{bmatrix} 1 & -2 \ 0 & 1 \end{bmatrix} = (1)(1)-(-2)(0) = 1
  4. sub dxdydxdy for dudvdudv
  5. D(2x+3y)dxdy=(1)D(2(u2v)+3(v)dvdu\iint_D(2x + 3y)dxdy = (1)\iint_D (2(u-2v) + 3(v)dvdu
  6. Set up integral w/ limits
  7. 13610(2uv)dudv=112\int^3_1 \int^{10}_6 (2u-v)dudv = 112
Example :: Integrate using Jacobian:

Use the map G(u,v)=(uv+1,uvv+1)G(u,v) = \left( \frac{u}{v+1}, \frac{uv}{v+1}\right) to compute D(x+y)dxdy\iint_D (x + y) dxdy where DD is the shaded region in the figure. Assume a=7,b=14,c=5a=7,b=14,c=5

  1. Find integral bounds
    yx=5yx=1x+y=7x+y=14\frac{y}{x}=5 \quad \frac{y}{x}=1 \quad \Big |\quad x + y = 7 \quad x + y = 14
    D:1yx57x+y14u=x+yv=yxD: 1\le \frac{y}{x} \le 5 \quad 7 \le x + y \le 14 \quad \Big | \quad u = x + y \quad v = \frac{y}{x}
  2. Compute Jacobian
    Jac(G)=[xuxv yuyv]=[1v+1u(v+1)2 vv+1u(v+1)2]=u(v+1)2Jac(G) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \begin{bmatrix} \frac{1}{v+1} & \frac{-u}{(v+1)^2} \ \frac{v}{v+1} & \frac{u}{(v+1)^2} \end{bmatrix} = \frac{u}{(v+1)^2}
  3. Apply change of variable formula by writing f(x,y)f(x,y) in terms of uu and vv
    f(x,y)=x+y=uv+1+uvv+1=uf(x,y) = x + y = \frac{u}{v+1} + \frac{uv}{v+1} = u
  4. Set up integral
    15714f(x,y)Jac(G)dudv=15714uu(v+1)2dudv=266.77\int^5_1 \int^{14}_7 f(x,y) \cdot Jac(G) dudv = \int^5_1 \int^{14}_7u \cdot \frac{u}{(v+1)^2}dudv = 266.77