Vector Functions

Published August 25, 2022 by Connor
Math
Vector Functions

Some of my calc 3 notes. Some equations might not show on mobile.

13.1 Vector-Valued Functions

Vector-Valued Functions

r(t)r(t) is a vector that points from the origin to a particles path at a time tt

r(t)=x(t),y(t),z(t)=x(t)i+y(t)j+z(t)kr(t)=\langle x(t), y(t), z(t) \rangle = x(t)i+y(t)j+z(t)k

  • In the equation above, variable t is a parameter as t is often representative of time
  • x(t)x(t), y(t)y(t) and z(t)z(t) are the components or coordinate functions
  • r(t)r(t) is referred to as the vector parametrization of a path
Example :: Path vs. Curve:

Describe the path r(t)=cos(t),sin(t),1,<t<r(t)= \langle cos(t), sin(t), 1 \rangle, \quad - \infty < t<\infty

  1. Notice z is a constant and cos and sin in x and y respectively. This can be noted that it will form a circle at the height of z=1z=1
Plane Curve

A line in R2\mathbb{R}^2

Space Curve

Definition: A line (curve) in R3\mathbb{R}^3

Example :: Projecting from (R3)(\mathbb{R}^3) onto (R2)(\mathbb{R}^2):

Describe the curve traced by r(t)=cos(t),sin(t),t,t0r(t)= \langle cos(t), sin(t), t \rangle, \quad t \le 0 for in terms of its projections onto the coordinate planes

  1. Onto xy-plane: set z=0z=0; r(t)=cos(t),sin(t),0,t0r(t)= \langle cos(t), sin(t), 0 \rangle, \quad t \le 0 = Circle
  2. Onto xz-plane: set y=0y=0; r(t)=cos(t),0,t,t0r(t)= \langle cos(t), 0, t \rangle, \quad t \le 0 = Swirl
  3. Onto yz-plane: set x=0x=0; r(t)=0,sin(t),t,t0r(t)= \langle 0, sin(t), t \rangle, \quad t \le 0 = Swirl
Example :: Find point on parametrization:
  1. r(4)r(4) will get us the proper x, therefore I will plug 4 into all values of t
  2. r(4)=(1+4,2+42,44)=(5,18,256)r(4)=(1+4, 2+4^2,4^4)=(5, 18, 256) therefore point P does lie on the line
Example :: Find circular parametrization:

Select the correct sine and cosine parametrization r(t)r(t) of the intersection of the surfaces x2+y2=16x^2 + y^2 =16 and z=3x2z=3x^2

  1. Knowing we are building a circle based on equation x2+y2=R2x^2 + y^2 =R^2 we can assume the equation w/ the radius x=4cos(t),y=4sin(t)x=4cos(t), y=4sin(t) meaning we can write the equation as r(t)=4cos(t),4sin(t),zr(t)= \langle 4cos(t), 4sin(t), z \rangle
  2. We also know z=3x2z=3x^2, therefore we replace z with this equation getting
  3. r(t)=4cos(t),4sin(t),3x2r(t)= \langle 4cos(t), 4sin(t), 3x^2 \rangle
  4. r(t)=4cos(t),4sin(t),48cos2(t)r(t)= \langle 4cos(t), 4sin(t), 48cos^2(t) \rangle
Example :: Finding plane using parametrizations:

Let CC the curve be parameterized by 𝐫(𝑡)=𝑡21,𝑡2𝑡2,46𝑡𝐫(𝑡)=⟨𝑡^2−1,𝑡−2𝑡^2,4−6𝑡⟩. Evaluate 𝐫(𝑡)𝐫(𝑡) at 𝑡=0𝑡=0, 𝑡=1𝑡=1, and 𝑡=3𝑡=3.

  1. v1=r(0)=1,0,4v_1=r(0)=⟨−1,0,4⟩
  2. v2=r(1)=0,1,2v_2=r(1)=⟨0,-1,-2⟩
  3. v3=r(3)=8,15,14v_3=r(3)=⟨8,-15,-14⟩

Find an equation for the plane containing rr at 𝑡=0𝑡=0, 𝑡=1𝑡=1, and 𝑡=3𝑡=3.

  1. Find a point P0P_0 where that I can multiply by the orthogonal vector using the equation nP0n \cdot P_0
  2. Find the vectors connecting the points of v1,v2,v3v_1, v_2, v_3 as shown above
    1. v1=(0,1,2)(1,0,4)=1,1,6v_1=(0,-1,-2)-(-1,0,4)=\langle 1,-1,-6 \rangle
    2. v2=(8,15,14)(1,0,4)=9,15,18v_2=(8, -15, -14)-(-1,0,4)=\langle 9, -15, -18 \rangle
  3. Find the orthogonal vector through the cross product
    1. n=v×w=[ijk11691518]=i[16 1518]j[16918]+k[11915]n=v \times w =\begin{bmatrix} i & j & k \\ 1 & -1 & -6 \\ 9 & -15 & -18\end{bmatrix} = i\begin{bmatrix} -1 & -6\ -15 & -18 \end{bmatrix} -j\begin{bmatrix} 1 & -6 \\ 9 & -18 \end{bmatrix} +k \begin{bmatrix} 1 & -1 \\ 9 & -15 \end{bmatrix}
  4. =72,36,6=12,6,1=\langle -72,-36,-6 \rangle=\langle -12, 6,1 \rangle
  5. Now find point P0P_0 by subtracting 2 vectors
    1. 8,15,140,1,2=(8,14,12)⟨8,-15,-14⟩-⟨0,-1,-2⟩=(8, -14, -12)
  6. Plug in
    1. 12(1)+6(0)+1(4)=812(-1)+6(0)+1(4)=-8
    2. (12(𝑡^2−1)+6(𝑡−2𝑡^2)+4−6𝑡=−8)

Determine whether r1(𝑡)=𝑡2+2,𝑡+1,5𝑡1r_1(𝑡)=⟨𝑡^2+2,𝑡+1,5𝑡−1⟩ and r2(𝑡)=3𝑡,2𝑡2,𝑡26r_2(𝑡)=⟨3𝑡,2𝑡−2,𝑡^2−6⟩ collide or intersect

  1. They collide if r1(t)=r2(t)r_1(t)=r_2(t) where a value of t exists
  2. t+1=2t2t+1=2t-2 equals t=3t=3 but when plugged in doesn’t equal out
  3. If they don’t collide, they can still intersect. We can find this out if we set r1(s)=r2(t)r_1(s)=r_2(t) which implies t=1t=1 and s=1s=-1, which satisfies the equations meaning the equations intersect, but don’t collide at the same moment

The intersection of the plane 𝑦=2𝑦=2 with the sphere 𝑥2+𝑦2+𝑧2=104𝑥^2+𝑦^2+𝑧^2=104

  1. To find this we must plug the values into the equation, and since we know y has a radius of 2 we can create the equation x2+22+z2=104x^2+2^2+z^2=104 where x2+z2=100x^2+z^2=100
  2. x=\sqrt{100}cos(t) \quad z=\sqrt{100}sin(t)) therefore \(r(t)= \langle 10cos(t), 2, sin(t) \rangle

13.2 Calculus of Vector-valued Functions

Limit of a Vector-valued Function

A vector-valued function r(t)r(t) approaches the limit u (a vector) as t approaches t0t_0 if limtt0r(t)u=0\lim_{t\rightarrow t_0} ||r(t)-u|| = 0 In this case, we write…
limtt0r(t)=u\lim_{t\rightarrow t_0} r(t)=u

Theorem 1: Vector-valued Limits are Computed Component-wise

A vector-valued function r(t)=x(t),y(t),z(t)r(t)= \langle x(t), y(t), z(t) \rangle approaches a limit as tt0t \rightarrow t_0 if and only if each component approaches a limit
limtt0r(t)=limtt0x(t),limtt0y(t),limtt0z(t)\lim_{t \rightarrow t_0} r(t)= \langle \lim_{t \rightarrow t_0}x(t), \lim_{t \rightarrow t_0}y(t), \lim_{t \rightarrow t_0}z(t) \rangle

Example :: Taking the limit of a vector-value function

Calculate limt3r(t)),where(r(t)=t2,1t,t1\lim _{t \rightarrow 3} r(t)), where (r(t)= \langle t^2, 1-t, t^{-1} \rangle

  1. Take the limit of each item individually as shown in… limtt0r(t)=limtt0x(t),limtt0y(t),limtt0z(t)\lim_{t \rightarrow t_0} r(t)= \langle \lim_{t \rightarrow t_0}x(t), \lim_{t \rightarrow t_0}y(t), \lim_{t \rightarrow t_0}z(t) \rangle
  2. limtt0r(t)=limt3t2,limt3(1t),limt3(1t)=9,2,1/3\lim_{t \rightarrow t_0} r(t)= \langle \lim_{t \rightarrow 3}t^2, \lim_{t \rightarrow 3}(1-t), \lim_{t \rightarrow 3}(\frac{1}{t}) \rangle= \langle 9, -2, 1/3 \rangle
Continuous Vector-value Function

A vector-value function is continuous if…
limtt0r(t)=t(t0)\lim_{t \rightarrow t_0}r(t)=t(t_0)
Derivative of Theorem 1:
r(t)r(t) is continuous at t0t_0 if and only if the components x(t),y(t),z(t)x(t),y(t),z(t) are continuous at t0t_0
r(t)=ddtr(t)=limh0r(t+h)r(t)hr'(t)=\frac{d}{dt}r(t)=\lim_{h \rightarrow 0}\frac{r(t+h)-r(t)}{h}
limh0r(t+h)r(t)h=limh0x(t+h)x(t)h,y(t+h)y(t)h,z(t+h)z(t)h\lim_{h \rightarrow 0}\frac{r(t+h)-r(t)}{h}=\lim_{h \rightarrow 0} \langle \frac{x(t+h)-x(t)}{h},\frac{y(t+h)-y(t)}{h},\frac{z(t+h)-z(t)}{h} \rangle

  • If the limit exists as shown above, (r(t)) is differentiable
Theorem 2: Vector-valued Derivatives are computed component-wise

A vector-valued function r(t)=x(t),y(t),z(t)r(t)= \langle x(t), y(t), z(t) \rangle
r(t)=ddtr(t)=x(t),y(t),z(t)r'(t)= \frac{d}{dt}r(t)=\langle x'(t), y'(t), z'(t) \rangle

Example :: Derivative of vector-value function:

Compute the derivative of r(t)=t,t4,t3r(t)= \langle t,t^4,t^3 \rangle

  1. Take the derivatives of each part separately…
    ddtr(t)=1,4t3,3t2\frac{d}{dt}r(t)=\langle 1,4t^3,3t^2 \rangle
    Calculate (r”(3)), where (r(t)= \langle ln(t), t, t^2 \rangle)
  2. Solve for r(t))::(r(t)=ddtt2,0,2r”(t)) :: (r”(t)= \frac{d}{dt} \langle -t^{-2}, 0, 2 \rangle
  3. Plug in r(3)=1/9,0,2r”(3)= \langle -1/9, 0, 2 \rangle
Differentiation Rules
  • Sum Rule:
    (r1(t)+r2(t))=r1(t)+r2(t)(r_1(t)+r_2(t))’=r_1′(t)+r_2′(t)
  • Constant Multiple Rule: For any constant
    c1(cr(t))=cr(t)c_1 (cr(t))’=cr'(t)
  • Scalar Product Rule: For any differentiable scalar-valued function (f_1)
    ddt(f(t)r(t))=f(t)r(t)+f(t)r(t)\frac{d}{dt}(f(t)r(t))=f'(t)r(t)+f(t)r'(t)
  • Chain Rule: For any function of (g),
    ddtr(g(t))=r(g(t))g(t)\frac{d}{dt}r(g(t))=r'(g(t))g'(t)
Example :: Using differentiation rules to solve vector-valued problems:

Let r(t)=t2,yt,1r(t)= \langle t^2, yt, 1 \rangle and (f(t)=e^{3t}) Calculate:

  1. ddtf(t)r(t)\frac{d}{dt}f(t)r(t) :: Using scalar product rule f(t)r(t)+f(t)r(t)f'(t)r(t)+f(t)r'(t)
  2. =3e3tt2,5t,1+e3t2t,5,0=3e3t(3t2+2t),3e3t(15t+5),3e3t=3e^{3t} \langle t^2, 5t, 1 \rangle + e^{3t} \langle 2t, 5, 0 \rangle=\langle 3e^{3t}(3t^2+2t), 3e^{3t}(15t + 5), 3e^{3t} \rangle
  3. ddtr(f(t))=r(f(t))f(t)=r(e3t)3e3t=2e3t,5,03e3t=6e6t,15e3t,0\frac{d}{dt}r(f(t)) = r'(f(t))f'(t) = r'(e^{3t}) \cdot 3e^{3t} = \langle 2e^{3t}, 5, 0 \rangle \cdot 3e^{3t} = \langle 6e^{6t}, 15e^{3t}, 0 \rangle
Theorem 3: Product rules for Dot and Cross Products

Dot Product Rule:

ddt(r1(t)r2(t))=r1(t)r2(t)+r1(t)r2(t)\frac{d}{dt}(r_1(t) \cdot r_2(t))=r’_1(t) \cdot r_2(t)+r_1(t) \cdot r’_2(t)

Cross Product Rule:

ddt(r1(t)×r2(t))=r1(t)×r2(t)+r1(t)×r2(t)\frac{d}{dt}(r_1(t) \times r_2(t))=r’_1(t) \times r_2(t)+r_1(t) \times r’_2(t)

The Derivative of a Tangent Vector

This vector will point in a path tangent to the chosen instant in multiple dimensions, shown as the path traced by (r(t)) at (t=t_0)

ΔrΔt=r(t0+h)r(t0)h\frac{\Delta r}{\Delta t}= \frac{r(t_0+h)-r(t_0)}{h}

where h>0h > 0

Tangent Line

Find the tangent line at r(t0)r(t_0): L(t)=r(t0)+tr(t0)\quad L(t)=r(t_0)+tr'(t_0)

Example :: parametrization of the tangent line

Find a parametrization of the tangent line at the point indicated
r(t)=6t,4t2,2t3,t=2r(t)=⟨6t,4t^2,2t^3⟩,\quad t=2

  1. Take the derivative of the equation
  2. r(t)=6t,4t2,2t3=6,8t,6t2\int r'(t)=⟨6t,4t^2,2t^3⟩’=⟨6,8t,6t^2⟩
  3. Solve using the formula: L(t)=r(t0)+tr(t0)\quad L(t)=r(t_0)+tr'(t_0)
  4. L(t)=r(t)+tr(t)=(6(2),4(2)2,2(2)3)+t6,8(2),6(2)2L(t)=r(t)+tr'(t)=(6(2),4(2)^2,2(2)^3)+t⟨6,8(2),6(2)^2⟩
The Integral of a Tangent Vector

Integrals are taken componentwise as shown below.
abr(t)dt=abx(t)dt,aby(t)dt,abz(t)dt\int^b_a r(t)dt= \langle \int^b_a x(t)dt,\int^b_a y(t)dt,\int^b_a z(t)dt \rangle

Theorem 4:

If R1(t)R_1(t) and R2(t)R_2(t) are differentiable and R1(t)=R2(t)R’_1(t)=R’_2(t), then
R1(t)=R2(t)+cR_1(t)=R_2(t)+c for some constant cc

Example :: Taking the integral of a derivative

We must find the integral of drdt=16sin(3t),15t\frac{dr}{dt}=\langle 1-6\sin(3t), \frac{1}{5}t \rangle @ t=4t=4 and r(0)=4,1r(0)=\langle 4,1 \rangle

  1. Find the general solution:
    r(t)=16sin(3t),15t=r(t)=t2sin(3t),110t2+cr(t)= \int \langle 1-6\sin(3t), \frac{1}{5}t \rangle=r(t)= \langle t-2\sin(3t), \frac{1}{10}t^2 \rangle +c
  2. Add these to the equation: r(0)=2,0+c)and(r(0)=4,1r(0)= \langle 2,0 \rangle +c) and (r(0)= \langle 4,1 \rangle
  3. r(t)=t+2cos(3t),110t2+2,1=r(t)=t+2cos(3t)+2,110t2+1r(t)= \langle t+2cos(3t), \frac{1}{10}t^2 \rangle + \langle 2,1 \rangle=r(t)= \langle t+2cos(3t)+2, \frac{1}{10}t^2+1 \rangle
  4. Then we find r(4)r(4)

Find r(t)r(t) using r(𝑡)=et,sin(𝑡),cos(𝑡),r(0)=1,0,1,r(0)=0,4,4r”(𝑡)=⟨e^t,\sin(𝑡),\cos(𝑡)⟩,r(0)=⟨1,0,1⟩,r'(0)=⟨0,4,4⟩

  1. Solve r(t)\int r”(t)
    r(t)=et,sin(𝑡),cos(𝑡)+1=et+c1,cos(t)+c2,sin(t)+c3r'(t)=\int⟨e^t,\sin(𝑡),\cos(𝑡)+1⟩= \langle e^t +c_1, -\cos(t)+c_2, \sin(t)+c_3 \rangle
  2. Plug in for r(0)=0,4,4r'(0)=⟨0,4,4⟩
    r(0)=et1,cos(t)+5,sin(t)+4r'(0) = \langle e^t-1, -\cos(t)+5, \sin(t)+4\rangle
  3. Solve r(t)\int r'(t)
    r(t)=et1,cos(t)+5,sin(t)+4=ett+c1,cos(t)+5t+c2,sin(t)+4t+c3\int r'(t)=\int⟨e^t-1,-\cos(t)+5,\sin(t)+4⟩= \langle e^t-t+c_1, -\cos(t)+5t+c_2, -\sin(t)+4t+c_3 \rangle
  4. Plug in for r(0)=1,0,1r(0)=⟨1,0,1⟩
    e00+c1,sin(0)+5(0)+c2,cos(0)+4(0)+c3=\langle e^0-0+c_1, -\sin(0)+5(0)+c_2, -\cos(0)+4(0)+c_3 \rangle=…
  5. =ett,sin(t)+5t,cos(t)+4(t)+2=\langle e^t-t, -\sin(t)+5t, -\cos(t)+4(t)+2 \rangle

Find the location at 𝑡=3𝑡=3 with r(0)=12,13r(0)= \langle 12,13 \rangle of a particle whose path satisfies

Integrate: drdt=18t11(t+1)2,2t4\frac{dr}{dt}= \langle 18t-\frac{11}{(t+1)^2},2t-4 \rangle
drdt=r(t)=9t2+11(t+1)+c1,t24t+c2\int \frac{dr}{dt}= r(t) = \langle 9t^2+\frac{11}{(t+1)} +c_1,t^2-4t +c_2 \rangle

Plug in for values of (c) and t:
r(3)+r(0)=9(3)2+11((3)+1)+1,(3)24(3)+13=3394,10r(3)+r(0)= \langle 9(3)^2+\frac{11}{((3)+1)} + 1,(3)^2-4(3) + 13 \rangle= \langle \frac{339}{4},10 \rangle

=3222,75π2163π216,3π2+416π2+816= \langle \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2},\frac{75\pi^2}{16}-\frac{3\pi^2}{16}, \frac{3\pi^2+4}{16}-\frac{\pi^2 + 8}{16}\rangle

Fundamental Theorem of Calculus for Vector-valued functions

Part 1: If r(t)r(t) is continuous on [a,b][a,b], and R(t)R(t) is an anti-derivative of r(t)r(t), then…
abr(t)dt=R(b)R(a)\int^b_a r(t)dt=R(b)-R(a)
Part 2: Assume that r(t)r(t) is continuous on an open interval (I) and let (a) be in (I), then…
ddtatr(s)ds=r(t)\frac{d}{dt}\int^t_a r(s)ds=r(t)

13.3 Arc Length and Speed

Arc Length

Assuming that r(t)r'(t) exists and is a continuous function, then we can calculate length of r over an interval
s=abr(t)dt=abx(t)2+y(t)2+z(t)2s = \int^b_a ||r'(t) || dt = \int^b_a \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}

Example :: Length of a vector

Find the arc length ss of the helix given by r(t)=cos3t,sin3t,3tr(t)= \langle \cos3t, \sin 3t, 3t \rangle for 0t2π0 \le t \le 2 \pi

Calculate the derivative of each component in the equation
r(t)=3sin3t,3cos3t,3r'(t) = \langle -3\sin3t, 3\cos3t, 3 \rangle

Square each component of (r'(t)) and add them
r(t)2=9sin23t+9cos3t+9=9(sin23t+cos23t)+9=18r'(t)^2 = 9\sin^2 3t + 9\cos 3t + 9 = 9(\sin^23t + \cos^2 3t ) + 9 = 18

Take the integral
s=02πr(t)dt=02π18dt=62πs = \int^{2\pi}_0 ||r'(t)||dt = \int^{2\pi}_0 \sqrt{18}dt = 6 \sqrt{2} \pi
Compute the length of the curve (𝐫(𝑡)=⟨−8𝑡,5𝑡+6,−5𝑡−2⟩) over the interval (0≤𝑡≤5).

Calculate the derivative of each component
r(t)=8,5,5r'(t) = ⟨−8,5,−5⟩


Square each component, add them and then take the square root
r(t)=(8)2+52+(5)2=114||r'(t)|| = \sqrt{(-8)^2 + 5^2 + (-5)^2} = \sqrt{114}

Integrate over the range

  1. s=05114dt=114t05=5114s = \int^5_0 \sqrt{114}dt = \sqrt{114}t|^5_0= 5\sqrt{114}

Compute the length of the curve (𝐫(𝑡)=⟨2𝑡,ln(𝑡),𝑡^2⟩) over the interval (1≤𝑡≤3).

Calculate the derivative of each component
r(t)=2,1t,2tr'(t) = ⟨2,\frac{1}{t},2t⟩

Square each component, add them and then take the square root
r(t)=(2)2+(1t)2+(2t)2=4+1t2+4t2||r'(t)|| = \sqrt{(2)^2 + (\frac{1}{t})^2 + (2t)^2} = \sqrt{4 + \frac{1}{t^2} + 4t^2}

s=034t2+1+4t4t2dt=(t2+lnt)13=9+ln31ln1s = \int^3_0 \sqrt{\frac{4t^2 + 1 + 4t^4}{t^2}}dt = (t^2 + ln|t|)|^3_1 = 9 + ln|3| - 1 - ln|1|

Compute the arc length function s(t)=atr(u)dus(t)= \int^t_a ||r'(u)||du for r(t)=14t2,12t2,t3r(t)= \langle 14t^2, 12t^2, t^3 \rangle where a=0a=0

Take the derivative of each component
r(t)=28t,24t,3t2r'(t)= \langle 28t, 24t, 3t^2 \rangle

Find the length
r(t)=784t2+576t2+9t4=1360t2+9t4||r'(t)||=\sqrt{784t^2+576t^2+9t^4}=\sqrt{1360t^2+9t^4}

Take the integral

0tt1360+9t2=(1360+9t2)32270t=(9t2+1360)3254408527\int^t_0 t\sqrt{1360+9t^2}=\frac{(1360+9t^2)^{\frac{3}{2}}}{27}|^t_0=\frac{\left(9t^2+1360\right)^{\frac{3}{2}}-5440\sqrt{85}}{27}

Compute the length of the curve r(t)=5t𝐢+9t𝐣+(6t29)𝐤r(t)=5t𝐢+9t𝐣+(6t^2−9)𝐤 over the interval 0t20 \le t \le 2

Find the derivative of each compontent of r(t)r(t)
r(t)=5i+9j+(12t)kr'(t)=5i+9j+(12t)k

Find the length
r(t)=52+92+(12t)2=25+81+144t2=106+144t2||r'(t)||=\sqrt{5^2 + 9^2 + (12t)^2}=\sqrt{25 + 81 + 144t^2}=\sqrt{106 + 144t^2}

Integrate over the interval
02106+144t2=106+144t2t02=106+144(2)2106+02=682106=15.819\int^2_0 \sqrt{106 + 144t^2}=\sqrt{106 + 144t^2}t|^2_0=\sqrt{106 + 144(2)^2}-\sqrt{106 + 0^2}=\sqrt{682}-\sqrt{106}=15.819

Speed of a arc length function

s(t)=dsdt=r(t)s(t) = \frac{ds}{dt}=||r'(t)||

Example :: Speed of an arc length function

Find the speed over the path r(t)=et4,7,4t1r(t)=⟨e^{t−4},−7,4t^{−1}⟩ at t=4t=4; or v(4)v(4)

  1. Find the derivative of each compontent
    r(t)=et4,0,4t2r'(t)=⟨e^{t−4},0,-4t^{−2}⟩
  2. Find the length
    r(t)=v(t)=e2t8+16t4||r'(t)||=v(t)=\sqrt{e^{2t−8} + 16t^{-4}}
  3. Plug in (t=4)
    e2(4)8+16(4)4=1+1/16\sqrt{e^{2(4)−8} + 16(4)^{-4}}=\sqrt{1 + 1/16}
Arc Length Parametrization

Note: parametrizations of a curve are often not unique, as shown in r1(t)=t,t2r_1(t) = \langle t, t^2 \rangle is equal to r2(u)=u3,u6r_2(u)= \langle u^3, u^6 \rangle
r(s)=1for all s||r'(s)||=1 \quad \text{for all s}
3 properties of acr length parametrization:

  1. Every velocity vector r(s)r'(s) has length equal to 1
  2. The arc length of the curve that is traced over any interval [a,b][a, b] is equal to bab-a, the length of the interval:
    distance traveled over [a,b]=abr(s)ds=ab1dt=ba\text{distance traveled over [a,b]} = \int^b_a||r'(s)||ds=\int^b_a1dt=b-a
  3. The parameter ss corresponds to the arc length of the curve that is traced from the starting point, thus the name arc length parametrization
Finding the arc length parametrization

Note: Start with any parametrization r(t)r(t) such that r(t)0r'(t) \ne 0 for all tt.

  1. Form the arc length integral
    s=g(t)=0tr(u)dus = g(t)= \int^t_0 ||r'(u)||du
  2. Determine the inverse of g(t)g(t)
    • Note that because r(t)0,s=g(t)||r'(t)|| \ne 0, \quad s = g(t) is an increasing function, and gg has an inverse t=g1(s)t=g^{-1}(s)
  3. Take the new parametrization to find the arc length parametrization
    r1(s)=r(g1(s))r_1(s) = r(g^{-1}(s))

Example :: Finding the arc length parametrization:

Find the parametrization 𝐫(𝑡)=13cos(𝑡),13sin(t),33t2π𝐫(𝑡)=⟨13cos(𝑡),13sin(t), \frac{33t}{2\pi}⟩ of the helix.

  1. First, calculate the arc length function
    r(t)=169sin2(t)+169cos2(t)+3324π2=169+10894π2||r'(t)||= \sqrt {169\sin^2(t) + 169\cos^2(t) + \frac{33^2}{4\pi^2}}=\sqrt{169 + \frac{1089}{4\pi^2}}
    0t169+10894π2=169+10894π2t\int^t_0\sqrt{169 + \frac{1089}{4\pi^2}}=\sqrt{169 + \frac{1089}{4\pi^2}}t
  2. Find the inverse of the arc length function
    s=169+10894π2t;t=s169+10894π2s = \sqrt{169 + \frac{1089}{4\pi^2}}t; \quad t = \frac{s}{\sqrt{169 + \frac{1089}{4\pi^2}}}
  3. Substitute our new tt into the original parametrization gives us the arc length parametrization
    r(s169+10894π2)=13cos(s169+10894π2),13sin(s169+10894π2),33(s169+10894π2)2πr(\frac{s}{\sqrt{169 + \frac{1089}{4\pi^2}}})=⟨13cos(\frac{s}{\sqrt{169 + \frac{1089}{4\pi^2}}}),13\sin(\frac{s}{\sqrt{169 + \frac{1089}{4\pi^2}}}), \frac{33(\frac{s}{\sqrt{169 + \frac{1089}{4\pi^2}}})}{2\pi}⟩
  4. To verify the answer, see if your new equation equals 1, but I don’t care to do that

13.5 Motion in 3-Space

Velocity vector is the derivative:
v(t)=r(t)=limh0r(t+h)r(t)hv(t)=r'(t)=\lim_{h \rightarrow 0} \frac{r(t+h)-r(t)}{h}
Acceleration vector is the 2nd derivative:
a(t)=r(t)a(t)=r”(t)

Theorem 1: Tangential and Normal Components of Acceleration

In the decomposition a=aTT+aNNa=a_T T + a_N N, we have
aT=aT=avv,aN=aN=a2aT2a_T=a \cdot T = \frac{a \cdot v}{||v||}, \quad a_N=a \cdot N = \sqrt{||a||^2-|a_T|^2}
and…
aTT=(avvv)v,aNN=aaTT=a(avvv)va_T T=(\frac{a \cdot v}{v \cdot v})v, \quad a_N N=a-a_T T= a - (\frac{a \cdot v}{v \cdot v})v

Example :: The decomposition of a(t):

Find the decomposition of a(t)a(t) where aTT+aNNa_TT+a_NN into tangential and normal components for r(𝑡)=5𝑡,3𝑡2,3𝑡3r(𝑡)=⟨5𝑡,3𝑡^2,3𝑡^3⟩ at t=2t=2

  1. Solve for a using double derivative to get to a(t)a(t)
    v(t)=5,6t,9t2;a(t)=0,6,18tv(t)=⟨5,6t,9t^2⟩; \quad a(t)=⟨0,6,18t⟩
  2. Solve for T at (t=2)
    v(2)=5,12,36,a(2)=0,6,36v(2)=⟨5,12,36⟩,\quad a(2)=⟨0,6,36⟩
    T=vv=5,12,3652+122+362=5,12,361465T=\frac{v}{||v||}=\frac{\langle 5,12,36 \rangle}{\sqrt{5^2+12^2+36^2}}= \frac{\langle 5,12,36 \rangle}{\sqrt{1465}}
  3. Solve for aTa_T
    aT=aT=0,6,3651465,121465,361465=72,3621465=93,3121465a_T=a \cdot T=⟨0,6,36⟩ \cdot \langle \frac{5}{\sqrt{1465}}, \frac{12} {\sqrt{1465}}, \frac{36}{\sqrt{1465}}\rangle=\frac{\langle 72,36^2 \rangle}{\sqrt{1465}}=\frac{93,312 }{\sqrt{1465}}
  4. Solve for aTTa_TT
    aTT=aTT=93,31214655,12,361465=63.694,764.33,2,292.991a_TT=a_T \cdot T= \frac{93,312 }{\sqrt{1465}} \cdot \frac{\langle 5,12,36 \rangle}{\sqrt{1465}} =\langle 63.694, 764.33,2, 292.991 \rangle
  5. Solve for aNNa_NN:
    aNN=aaTT=0,6,3663.694,764.33,2,292.991=63.694,758.33,2,256.991a_NN=a-a_TT=\langle 0,6,36 \rangle-\langle 63.694, 764.33,2, 292.991 \rangle = \langle 63.694, 758.33,2, 256.991 \rangle
  6. Solve for aNNa_NN
    63.694,758.33,2,256.991=2,381.833||\langle 63.694, 758.33,2, 256.991 \rangle||=2,381.833

Homework 4

The position of a particle after t seconds is given by r(t)=t2,4t,4lntr(t)= \langle t^2, 4t, 4 \ln t \rangle for t1t \ge 1

  1. Calculate the position, velocity, and acceleration of the particle when t=1t=1
    1.1. position:
    r(1)=12,4(1),4ln(1)=1,4,0r(1)= \langle 1^2, 4(1), 4 \ln (1) \rangle= \langle 1, 4, 0 \rangle
    1.2. Velocity: (r'(t)= \langle 2t, 4, \frac{4}{t} \rangle)
    r(1)=2(1),4,41=2,4,4r'(1)= \langle 2(1), 4, \frac{4}{1} \rangle= \langle 2, 4, 4 \rangle
    1.3. Acceleration: (r”(t)= \langle 2, 0, -\frac{4}{t^2} \rangle)
    r(t)=2,0,4r”(t)= \langle 2, 0, -4 \rangle
  2. Calculate the total distance traveled by the particle from t=1t=1 to t=et=e
    2.1. Area under the graph (distance): abr(t)\int^b_a ||r'(t)||
    r(t)=(2t)2+42+(4t)2=4t2+16+16t2||r'(t)||=\langle (2t)^2 + 4^2 + (\frac{4}{t})^2 \rangle=\sqrt{4t^2+16+ \frac{16}{t^2}}
    4t2+16+16t2=4t4+16t2+16t2=4(t2+2)2t2=2(t2+2)t\sqrt{4t^2+16+ \frac{16}{t^2}}=\sqrt{\frac{4t^4+16t^2+16}{t^2}}=\sqrt{\frac{4(t^2+2)^2}{t^2}}=\frac{2(t^2+2)}{t}
    2.2. Integrate:
    21et2+2t=2(1et+1e2t)=t2+4lnt1e2\int ^e _1 \frac{t^2+2}{t}=2(\int ^e _1t+\int ^e _1\frac{2}{t})= t^2+4\ln t |^e_1
    2.3. Solve:
  3. t2+4lnt1e=e2+4lne12+4ln1=e2+41=e2+3t^2+4\ln t |^e_1=e^2+4\ln e - 1^2+4\ln 1=e^2+4-1=e^2 +3

A scientist with a jetpack starts at (t = 0) at the position (2,5,1)(2, 5, 1) and flies with a velocity function of v(t)=2t3,4t,6e2tv(t) = \langle 2t −3, 4t, 6e^{−2t} \rangle, in m/s. He flies for 2 seconds before…

  1. Find a formula for the scientist’s position as a function of time
    1.1. v(t)=r(t)\int v(t) = r(t)
    v(t)=t23t+2,2t2+5,3et2+4\int v(t) = \langle t^2 −3t + 2, 2t^2 + 5, -3e−t^2 +4 \rangle
  2. At what position does the scientist end up after the 2 seconds?
    2.1. Plug in for t=2t=2
    r(2)=223(2)+2,2(2)2+5,3e(2)2+4=v(t)=0,13,3e4+4r(2) = \langle 2^2 −3(2) + 2, 2(2)^2 + 5, -3e−(2)^2 +4 \rangle=v(t) = \langle 0, 13, -3e^{-4} + 4 \rangle
  3. What is the scientist’s velocity vector when (t = 2)?
    3.1. Solve for the equation given:
  4. v(2)=2(2)3,4(2),6e2(2)=1,8,6e4v(2) = \langle 2(2) −3, 4(2), 6e^{−2(2)} \rangle = \langle 1, 8, 6e^{−4} \rangle

Oh no! After the 2 seconds, the jetpack ran out of fuel and the scientist begins to fall. The scientist is now only affected by the acceleration due to gravity (which we approximate as (a = \langle 0, 0, −10 \rangle) ).

  1. Get a formula for the path the scientist takes as they fall. Use answers to parts (b) and (c) of the previous problem as conditions for the velocity and acceleration when t=2t = 2.
  2. FINISH!! (Never finished)

  3. A roller coaster is going along a path. Wheeee! At a certain time t0t_0 sec, the roller coaster has position (in m) r(t0)=5,2,13r(t_0) = 〈5, 2, 13〉, velocity (in m/s) v(t0)=2,3,2v(t_0) = 〈−2, 3, 2〉 and acceleration (in (m/s^2)) a(t0)=7,3,5a(t_0) = 〈7, −3, 5〉.
  4. What is the speed of the roller coaster at this time (t0)(t_0)
    1.1. Find the length of the velocity vector to find speed
    v(t0)=(2)2+32+22=17m/s||v(t_0)||=\sqrt{(-2)^2+3^2+2^2}=\sqrt{17} m/s
  5. Was the roller coaster speeding up or slowing down?
    2.1. Why is the roller coaster slowing down
  6. Approximate the position of the roller coaster a quarter of a second later
    3.1. Multiply the velocity by 1/4
  7. r(t0)14v(t0)=(5,2,13)+(0.5,.75,0.5)=(4.5,2.75,13.5)r(t_0)-\frac{1}{4}v(t_0) = (5, 2, 13) + (-0.5, .75, 0.5)=(4.5, 2.75, 13.5)

[P] A second roller coaster follows the curve R defined by the following system of equations:

  1. Give a parametrization for the path the roller coaster takes
    1.1. Solve for x and y. Since (x^2 + y^2), this means our shape is a circle giving us cos and sin for the first two components
    r(t)=10cost,10sint,10cos2t0t2πr(t)=\langle 10\cos t, 10 \sin t, 10 \cos^2 t \rangle \quad 0 \le t \le 2\pi
  2. During which parts of the track is the roller coaster going uphill?
    2.1 Thinking in terms of cos being graphed, we can assume that from (0 \le t \le \frac{\pi}{2}) and (\pi \le t\frac{3\pi}{2})
  3. [C] Set up an integral to compute the length of the roller coaster track. Then use a computer to evaluate the integral; give your answer to 3 decimal places.
    3.1. (\int^{2\pi}_0||r(t)||) HELP
    r(t)=100sin2(t)+100cos2(t)+100sin4(2t)=73.0506||r'(t)||=\sqrt{100\sin^2 (t) + 100 \cos^2 (t) + 100 \sin^4 (2t)}=73.0506

Consider the (continuous) function which has some values given by the following table (the horizontal axis is the x-axis and the vertical axis is the y-axis):

  1. What is the value of f(2.5,4.1)f(2.5, 4.1)?
    • ANS: 9696
  2. Approximate the value of f(2.6,4.1)f(2.6, 4.1).
    • (96932)94.5\left(\frac{96 \cdot 93}{2}\right) \approx 94.5
  3. What is the average rate of change of ff moving from the point (2.5,4.1)(2.5, 4.1) to (2.5,4.3)(2.5, 4.3)?
    • ΔyΔx=40.2=20\frac{\Delta y}{\Delta x} = \frac{4}{0.2} = 20
  4. What is the average rate of change of ff moving from the point (2.3,3.9)(2.3, 3.9) to (2.7,4.1)(2.7, 4.1)?
    • ΔyΔx=93860.42+0.22=70.447215.65\frac{\Delta y}{\Delta x} = \frac{93-86}{\sqrt{0.4^2+0.2^2}} = \frac{7}{0.4472} \approx 15.65
  1. Consider the function f(x,y)=x2+y2f(x, y) = \sqrt{x^2 + y^2}. What does the graph of this function look like?
    • A cone when translated to z=x2+y2z = \sqrt{x^2 + y^2}
  2. Give a parametrization for the line y=2x+3y = 2x + 3 and plug the parametrization into ff. What is the relationship between f(x,y)f(x, y) and f(t)f(t)?
    • Plug in yy for xx and change formula to f(t)=f(t) = \ldots
  3. f(x,2x+3)=f(t)=t2+(2t+3)2=t2+4t2+12t+9=5t2+12t+9f(x, 2x+3) = f(t) = \sqrt{t^2 + (2t+3)^2} = \sqrt{t^2 + 4t^2 + 12t + 9} = \sqrt{5t^2 + 12t + 9}
  4. Minimize this one-variable function to find which point on the line y=2x+3y = 2x + 3 is closest to the origin.